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Abstract. On the basis of the general form for the energy needed to adapt the connection strengths
wij of a network in which learning takes place, a local learning rule is found for the changes1wij .
This biologically realizable learning rule turns out to comply with Hebb’s neuro-physiological
postulate, but is not of the form of any of the learning rules proposed in the literature.

The learning rule possesses the property that the energy needed in each learning step is
minimal, and is, as such, evolutionary attractive. Moreover, the pre- and post-synaptic neurons are
found to influence the synaptic changes differently, resulting in an asymmetric connection matrix
wij , a fact which is in agreement with biological observation.

It is shown that if a finite set of the same patterns is presented over and over again to the
network, the weights of the synapses converge to finite values.

Furthermore, it is proved that the final values found in this biologically realizable limit are
the same as those found via a mathematical approach to the problem of finding the weights of
a partially connected neural network that can store a collection of patterns. The mathematical
solution is obtained via a modified version of the so-called method of the pseudo-inverse, and has
the inverse of a reduced correlation matrix, rather than the usual correlation matrix, as its basic
ingredient. Thus, a biological network might realize the final results of the mathematician by the
energetically economic rule for the adaption of the synapses found in this article.

1. Introduction

In this paper we consider some theoretical aspects of the changes of the connections as they
could take place between the nerve cells, or neurons, of the brain. In a learning process,
these connections change continuously, and are adapted in such a way that a particular task,
e.g. the storage of patterns, is achieved. The answer to the question in which way the
connections between neurons actually change in response to external stimuli, can only be
given by experiment, not via any theoretical discussion. Although there is a lot of experimental
activity related to the study of the functioning of neurons, there is not yet a unique answer to
this question: see, e.g. the 1998 review articles of Buonomano and Merzenich [1], Marder [2],
or the 1990 review article of Brownet al [3].

In the 1940s, the Canadian psychologist Hebb conjectured (in his well known book
The organization of behaviour—A neuro-physiological theory[4]) that the changes of the
connections between the neurons take place according to a ‘neuro-physiological postulate’ that
nowadays is referred to as Hebb’s rule: ‘When an axon of cellA is near enough to excite a cell
B and repeatedly or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells so thatA’s efficiency, as one of the cells firingB, is increased’.

† E-mail address:heerema@phys.uva.nl
‡ E-mail address:leeuwen@phys.uva.nl

0305-4470/99/020263+24$19.50 © 1999 IOP Publishing Ltd 263



264 M Heerema and W A van Leeuwen

Thus Hebb’s rule is a quantitative statement on the enhancement of synaptic efficiency of signal
transmission, but does not state qualitatively, by some mathematical formula, to what extent.

Nowadays, there is plenty of evidence that synapses do indeed change in a learning process
and since the appearance of Hebb’s article many quantitative proposals, all complying with
Hebb’s postulate, have been put forward. This paper is also concerned with such a quantitative
expression for the synaptic changes. However, rather than postulating a learning rule, we
derive it from some underlying principle. As a final result, we find a learning rule for the
adaptation of the strengths, or weights,wij , of a synapse connecting a post-synaptic neuroni

and a pre-synaptic neuronj . Its explicit form reads:

1wij (tn) = ηi [κ − {hi(tn)− θi}(2ξi − 1)](2ξi − 1)ξj . (1)

This—asymmetric—learning rule gives1wij , the positive or negative increment of the weight
wij , as a function of the activitiesξi andξj of neuronsi andj of the synapse that connects
these neurons. In our convention, the activityξ of a neuron equals 1 if it generates an action
potential, and 0 if it is quiescent. The functionh is the potential difference between the interior
and the exterior of a neuron, at its axon hillock. The formula gives the change at timetn. The
indexn denotes the time at thenth learning step in the process of learning (n = 1, 2, . . .).
The threshold potential,θi , is a constant, typical for the neuroni in question. It equals, by
definition, the potential that must be surmounted, at the axon hillock of neuroni, in order that
it will fire. The quantitiesηi andκ are also constants. Their precise identification, as variables
related to individual and collective neuron properties, is outside the scope of this paper. The
learning rule (1), which constitutes our main result as far as biology is concerned, has a form
that is compatible with Hebb’s postulate.

It is a well known fact that, for a given neural net with strengthswij of the weights, there
are infinitely many ways to choose changes1wij of the weights such that the network will
perform storage and retrieval of a new pattern. The derivation of our learning rule is based on
the assumption that, at each instant of the learning process, the energy needed to change the
neural network in order to store a new pattern, is minimal. The requirement that, at each step
n of the learning process, the energy needed is as low as possible, turns out to be sufficient
to uniquelydetermine the way in which the weight of each synapse connecting two arbitrary
neuronsi andj should be changed, and thus fixes a learning rule for the adaptation of the
weights of all the connections. We will call this learning rule the ‘non-local energy saving
learning rule’, since it turns out to depend on the state of activity ofall neuronsj from which
neuroni receives its input. It is given by equation (42) below.

It is impossible, however, for a synapse connecting two neuronsi andj , to realize the
non-local energy saving learning rule (42) exactly, as follows by a careful inspection of formula
(42). In fact, in order to adapt itself according to this learning rule, a synapse betweeni and
j would have to ‘know’ the individual states of activityξk of all pre-synaptic neuronsk from
which neuroni gets its input, whereas a synapse only ‘feels’ the states of the two neuronsi

andj which it connects. The best a synapse can do in order to compete with the performance
of the non-local learning rule (42) is to adapt itself according to a learning rule that is a
local approximation of the non-local learning rule. It is this local approximation, given the
expression (1) above, which constitutes our main biological result. We will refer to it as the
local energy saving learning rule, to distinguish it from its non-local counterpart. The point of
locality of learning rules is discussed in more detail in section 6.

A numerical estimation of the performance of the local learning rule, equation (1), versus
to the non-local one, equation (42), is made in section 7. Local learning turns out to be a
very effective alternative to non-local learning, regarding both its power to store and retrieve
patterns and its capacity to be economic in use of energy.
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In order to arrive at the non-local energy saving learning rule, we think of a neuron as a
living cell. A living cell, as a physical object, is a stationary non-equilibrium system. The
basic assumption of this paper is that any type of change of the cellular cleft can only be
effected byaddingenergy to the non-equilibrium system, independent of whether it leads to
a strengthening or a weakening of the synaptic efficacy. This is a plausible, but not totally
trivial postulate, which can only be falsified by a detailed biophysical or biochemical study
of the process of change of the synapse. In our setup, the mere assumption that extra energy
is needed for any change of the synapse, independent of whether it leads to an increase or a
decrease of its efficiency, replaces Hebb’s postulate on efficiency cited above.

Before starting the derivation of the energy saving learning rule itself, we discuss, in
section 3, the 81 possibilities which, in principle, are compatible with Hebb’s postulate.
In particular, we consider these mathematical realizations with respect to their biological
plausibility. We then find that, in fact, out of the 81 learning rules that are possible in principle,
only two are also biologically plausible. These are the learning rules (20) and (21).

The actual derivation of the energy saving learning rule is performed in section 4. To
our satisfaction, it general form turns out to imply the two forms (20) and (21) expected in
the preceeding section on biological grounds only. Thus our ‘principle of minimal change of
energy’, which might lead,a priori, to any of the 81 possibilities for a realization of a learning
rule for the change of weight of a synapse, happens to yield precisely those rules which are
biological plausible.

In section 5 we consider the situation that the changes of the connections do not take place
in an energetically optimal way, but in such a way that patterns are not partially wiped out
when new patterns are learned as is the case for learning based on the energy saving learning
rule (1) or (42). We then ask ourselves the question: which learning rule would then be found
for the changes1wij of the synaptic weights? Again, its general form turns out to comply
with one of the 81 possible realizations of the Hebb rule considered in section 3, but, in this
case, it is a biologically improbable one. We therefore do not pursue this path any further.

The question might arise whether the non-local energy saving learning rule converges, in
the limit that the number of learning steps tends to infinity. And, if so, to what values they
then would converge. The answers to these questions are the subject of section 4.2.

There exists a well known way to obtain the final form of the connection strengthswij of
an artificial neural network that can store and retrieve a set of patterns: it goes under the name
‘pseudo-inverse solution’ [5, 6]. By inversion of a certain matrix related to the patterns to be
stored, the so-called correlation matrix, one can obtain, without any limiting procedure, final
values for the weightswij of the connections of a neural network that yield the desired result
of being capable of storing and retrieving a collection of patterns.

We will consider an assembly ofN neurons, whereN is a number relevant for a certain
subunit of the brain, such as a cortical hyper-column, for whichN is of the order of 104–
105. Although such subunits are highly interconnected, they are partially connected in the
mathematical sense, since each neuron is connected to only a finite fraction of the subunit
considered. Moreover, biological neurons are not self-connected, i.e.wii = 0. These two
biological facts force us to study, from the very beginning, diluted, or partially connected,
networks. In the limit that the dilution tends to zero, we rediscover, if we relax the requirement
that the self-connections all vanish, some of the well known results for fully connected
networks, in particular those of Diederich and Opper [7], and of Linkevich [8].

A possible question one might now ask is: is there any relation between the final values
obtained for the weightswij obtained in the limit of an infinite number of learning steps,
n→∞, on the one hand and the values obtained via the pseudo-inverse method on the other
hand? The answer to this question is as simple as it is amazing: the results are identical. The
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proof of this point is the subject of appendix B, where the method of the pseudo-inverse is
modified in such a way that it can be used for partially connected networks. Thus, as a final
conclusion, we can state that: (i) the assumption of economy of energy in a learning step,
(ii) the well known method based on the pseudo-inverse of the correlation matrix and (iii)
the biological plausibility of a learning rule are three members of a trio that work in concert.
We want to stress, once again, that the question of whether the evolutionary development of
the brain actually has led to an adaptation process of the synapses that is energetically the
most economical, is, as yet, experimentally, an open question. It is not excluded that the
realization of the changes of the synapses might take place in a biologically less probable,
or an energetically less favourable way. Our only certainty is that economy of energy and
biological probability go hand in hand.

Usually, neural networks have been modelled in the so-called spin representation, which,
in principle, can easily be translated to the so-called binary representation, which models the
biological reality more directly. In particular, in the binary representation the thresholds for
activation of a neuron can be taken constant, in accordance with the biological reality. In the
spin representation, however, the actual biological reality in a learning process can only be
modelled via the use of a time-dependent threshold, a fact which is often overlooked: one
erroneously treats the neuron thresholds in the spin model as constants (see, e.g. [9,10]). We
therefore have chosen not to use the spin, but the binary representation.

In our study of the connectionswij and the way in which they change in a learning process,
we will neglect two constraints set by nature. Firstly, the fact that, for an actual neuroni, the
magnitudes of the synaptic connections are within some interval characteristic for the synapse
in question. Secondly, the fact that, according to Dale’s law, the connections related to one
and the same pre-synaptic neuron either are only excitatory or only inhibitory. Furthermore,
we treat biological neurons as McCulloch and Pitts neurons, i.e. their response to input is
according to the rule (2), (3) below. We thus also neglect the retardation which results from the
finite speed of transmission of signals through axons and dendrites. A way retardation could
be included in a model has been put forward in [11].

For an introduction to this paper, see textbooks such as [12–14].

2. Attractor neural network model

Dynamics. We consider a network ofN interconnected neurons in the binary representation,
i.e. each neuron can have a statexi = 1 (the neuron producesoneaction-potential orspike)
or xi = 0 (the neuron is quiescent). The post-synaptic potential of neuroni at timet of this
system of neurons is modelled by

hi(t) =
N∑
j=1

wij (t)xj (t) (i = 1, . . . , N) (2)

where thexj (t) are the input signals at timet and where thewij (t) are theweights, also called
synaptic strengthsor synaptic efficaciesat timet . A weightwij takes into account the overall
effect of a synaptic connection between a post-synaptic neuroni and a pre-synaptic neuronj
and may be positive (excitation), negative (inhibition) or zero (no synaptic connection). The
weightswij , like the potentialshi , are expressed in volts. The output of neuroni is supposed
to be given by the dynamical equation

xi(t +1t) = θH{hi(t)− θi} (i = 1, . . . , N) (3)

where theconstantθi is the activation threshold characteristic of neuroni and where1t is
some discrete time step. A typical value forθi is 10 mV [15]. The symbolθH stands for the
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Heaviside step function, which equals one for positive arguments and vanishes otherwise.
In the so-called ‘spin representation’, active and non-active states of neuroni are

characterized bysi = 1 or si = −1, respectively. In this representation, the dynamical
equation (3) can be rewritten as

si(t +1t) = sgn

{ N∑
j=1

Jij (t)sj (t)− Ti(t)
}

(i = 1, . . . , N) (4)

where the time-dependent ‘coupling constants’Jij are related to the biological weightswij
throughJij = wij/2 and wheresj = 2xj − 1. The time-dependent ‘thresholds’Ti(t) are
related to the constant biological thresholdsθi according to

Ti(t) = θi −
N∑
j=1

Jij (t) (i = 1, . . . , N). (5)

In the literature the thresholdsTi(t) are usually treated as a constant; most often the constant is
taken to vanish [9, 10]. This seemingly innocent fact changes, of course, the dynamics (4) of
the system in a non-trivial way. As a consequence, the results obtained for, e.g. the adaptation
of the coupling constants differ from those obtained when the actual biological dynamics (3) is
used (cf equations (44) and (45)). Hence, when modelling adaptation processes of biological
neurons with constant thresholds, the use of the binary representation is obligatory.

Neural networks have two timescales, one related to the rate of change of the synaptic
efficacieswij and one related to the spiking activity of a neuron. The latter time is of the
order of milliseconds, the former is less well-defined, but can be estimated to lie somewhere
between seconds and days: it is a time related to the rate of learning of a brain. Hence, the1t

occurring in equation (3) is of the order of milliseconds. When the process of adaptation of
the weights has come to an end thewij remain constant.

Fixed points. We want to determine the synaptic efficacies of an attractor neural network, i.e.
of a network which can recall a number,p say, of previously stored patterns. The realization
of a recall corresponds to a fixed network state of the network dynamics (3). Let us denote the
patterns of activity, or patterns, byξµ = (ξµ1 , . . . , ξµN), whereµ = 1, . . . , p. Thusξµi = 1 or
ξ
µ

i = 0 with i = 1, . . . , N andµ = 1, . . . , p. The probability that a neuroni is in the state 1
or 0 is supposed to be given bya or (1− a) respectively. The quantitya is usually called the
mean activity of the neural net. For random patterns the mean activitya is given by 0.5. In
biological neural networks, however, the mean activitya is smaller [16].

Thus, a network which has stored, somehow,p patternsξµ satisfies the fixed point
equations

xi(t +1t) = xi(t) for xi(t) = ξµi (i = 1, . . . , N;µ = 1, . . . , p). (6)

Hence, equations (3) and (6) yield thepN equations

ξ
µ

i = θH

{ N∑
j=1

wij (t)ξ
µ

j − θi
}

(7)

for N2 unknownwij .
Let us now introduce so-called stability coefficientsγ µi [17]:

γ
µ

i (t) := (hµi (t)− θi)(2ξµi − 1) (8)

with hµi the post-synaptic potential

h
µ

i (t) =
N∑
j=1

wij (t)ξ
µ

j . (9)
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Remark thatγ µi depends, viahµi , on all weightswij , i.e.

γ
µ

i (t) = γ µi (w11(t), w12(t), . . . , wN−1,N (t), wNN(t)).

One easily checks, by distinguishing the casesξ
µ

i = 1 andξµi = 0, that an equivalent way
to express the equalities (7) are thepN inequalities

γ
µ

i (t) > 0. (10)

The inequality sign in (10) reflects that fact that the set of equations (7) is under-determined,
i.e. the equations (10) are necessary but not sufficient equations to determine uniquely a set of
weights of a network which has stored some patterns.

An arbitrary patternX(t)will only be recalled if it evolves in time to one of the fixed points
ξµ. Therefore, it is not sufficient for a network to have fixed points: for each of thep fixed
points that is related to a retrieval of a patternξµ, there must exist a whole neighbourhood of
points aroundξµ which is such that all points of this neighbourhood will evolve toξµ under the
dynamics (3). In technical terms, the fixed pointsξµ must have a non-zero basin of attraction.
For this reason, one may introduce [7,10,18] a positive thresholdκ, and demand the stronger
inequalities

γ
µ

i (t) > κ (11)

to hold, rather than the inequalities (10), which are equivalent to the fixed point equations (7).
The larger the thresholdκ, the larger the basins of attractions can be expected to be [10,18].

In order to solve equation (11) for the unknown weightswij , we consider it as far as its
equality sign is concerned. Then (11) can be recast in the equivalent form

N∑
j=1

wij (t)ξ
µ

j − θi = κ(2ξµi − 1) (i = 1, . . . , N;µ = 1, . . . , p) (12)

as may be checked by puttingξµi equal to 1 or 0. ThepN equations (12) do not fix uniquely
theN2 weightswij as long asp < N , the case we consider throughout this article. The storage
capacityα, defined asα := p/N , of a neural network is maximally equal to one for networks
described by equations (12).

Various types of networks.It is our aim to take into account specific aspects of the connectivity
of a biological network. In a biological neural network a neuron does not excite or inhibit
itself, i.e. for allt we have for the self-interactions (or self-connections)

wii(t) = 0 (i = 1, . . . , N). (13)

Moreover, a biological network will, in general, be partially connected: each neuron will have
some neighbourhood outside which there are no connections, i.e.

wij (t) = 0 (14)

for a given set of neuron pairs (i, j ). We shall call a network in which a (finite) fraction of the
weights vanish, a diluted network. LetM0 be the number of pairs (i, j ) for whichwij (t) = 0.
Then the dilutiond of a network ofN neurons is defined as

d := M0/N
2. (15)

Hence, the dilutiond is a number between 0 and 1.
Let us slightly generalize the above by distinguishing in a learning process changing

and non-changing connectionswij (t) instead of changing and vanishing connections. Let us
consider, for a moment, one particular neuroni. Then one may define the index sets

Vi := {j |wij (t) 6= wij (t0)} V ci := {j |wij (t) = wij (t0)}. (16)
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ThusVi contains the indices related to all connections of neuroni that, in a learning process,
change in time, whereas its complement,V ci , contains the indices related to all non-changing
connections. In particularV ci contains the index of neuroni itself (wii(t) = wii(t0) = 0), the
indices of neuronsj which have no connections with neuroni (wij (t) = wij (t0) = 0),
and the indices of neuronsj which have connections with fixed strengths with neuroni
(wij (t) = wij (t0) 6= 0). Thus, diluted networks are a subclass of networks with changing and
non-changing connections. By specifying, via equation (16), which connections are absent,
the network connectivity is completely defined. For later use, we introduceM, the number of
pairs (i, j ) for whichwij (t) = wij (t0) is constant, but not necessarily equal to zero.

3. Learning prescriptions—Hebb rules

In this section we consider all mathematical realizations which are, in principle, compatible
with Hebb’s postulate. We argue that, in our view, only two of them, namely (20) and (21)
are biologically plausible, in contrast to the realizations (22) and (23) used in the literature. In
order to show this, let us consider a network with changing and non-changing connections, in
which a learning process takes place with the purpose of storing a collection ofp patternsξµ.
Let the weights at timetn be given bywij (tn). After a learning step the new weights will be
given in terms of the old weights by

wij (tn+1) =
{
wij (tn) +1wij (tn) (j ∈ Vi)
wij (tn) (j ∈ V ci )

(17)

where1wij (tn) is the increment at timetn. A learning rule is a recipe for the change1wij
as a function of the states of the post-synaptic neuroni and the pre-synaptic neuronj when a
pattern (ξ1, . . . , ξN ) is presented to the network. There are four possible states (ξi, ξj ) that the
post- and pre-synaptic neuron can have, namely (0, 0), (0, 1), (1, 0) and (1, 1), each of which
may lead to one of the three possible changes for1wij : positive, negative or zero. Hence, in
principle there are 34 = 81 possible learning rules

1wij : (ξi, ξj ) 7−→ 1wij (ξi, ξj ). (18)

It is biologically improbable that connections will always grow or will always decrease.
Therefore, we exclude learning rules for which1wij (ξi, ξj ), for all four states (ξi , ξj ), are
either always positive, or always negative (reason of rejectiona of table 1). Moreover, in
our opinion, it is biologically probable that a connection between a pre-synaptic neuronj

and a post-synaptic neuroni does not change if the neuronj does not contribute to the post-
synaptic potential of neuroni, i.e. if ξj = 0. Therefore, we exclude learning rules for which
1wij (ξi, ξj = 0) 6= 0 with ξi = 0, 1 (reason of rejectionb of table 1).

Excluding these improbable learning rules, we are left with no more than two learning
rules, as may be verified by a simple inspection of table 1. One of these corresponds to the
assignments

(0, 0) 7−→ 1wij = 0 (0, 1) 7−→ 1wij < 0

(1, 0) 7−→ 1wij = 0 (1, 1) 7−→ 1wij > 0
(19)

(columnH in table 1), which can be expressed compactly by the formula

1wij = εij (2ξi − 1)ξj (20)

where theεij , here and elsewhere in this paper, are positive numbers. Similarly, the other one
can be expressed by the formula

1wij = −εij (2ξi − 1)ξj (21)
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Table 1. The 81 possible ways in whichwij may change as a function of the activities of the
post-synaptic neuroni and the pre-synaptic neuronj can be read off from the 81 columns of the
table. Each row may have up arrows (↑), down arrows (↓) or zeros, indicating a strengthening,
a weakening or no change of a synaptic connection. The biological reason to reject a column
is indicated by the lettera or b immediately below the column. The reasons area: there either
is only strengthening or weakening of the synapse,b: there is a change of the synaptic strength
if the pre-synaptic neuronj is inactive. From the table we can read off that 78 possibilities are
excluded for reasona and/orb. The column with only zeros is excluded for obvious reasons. The
two possibilities for the Hebb rule which we are left with are indicated by the symbolsH andA:
the first corresponds to what is called Hebbian learning, the second to what is called anti-Hebbian
learning. If we do not reject a possibility for reasonb, there are many more possible Hebbian rules.
The possibility indicated byG was used by Gardner [19]. The one preferred by physicists in their
modelling of neural networks, has been indicated by the symbolP .

(columnA in table 1).
Learning can be classified as Hebbian or anti-Hebbian. Hebbian learning is characterized

by the fact that, if both neuronsi andj are active,1wij is positive, whereas for anti-Hebbian
learning1wij is negative. So, the two remaining learning rules (20) and (21) are Hebbian and
anti-Hebbian, respectively. The learning rules (20) and (21) have, to the best of our knowledge,
not been used, as yet, in mathematical or physical studies that tried to model biological neural
systems (see, e.g. [11,20]).

If we allow for the possibility that1wij 6= 0 if the pre-synaptic neuronj is inactive
(ξj = 0), there are many extra possible mappings (18), of which we mention the two most
often encountered in the literature

1wij = εij ξi(2ξj − 1) (22)

1wij = εij (2ξi − 1)(2ξj − 1). (23)

The learning rule (22) was used, e.g. by Gardner [19], in studying the retrieval properties of a
neural network with an asymmetric learning rule (columnG in table 1). The learning rule (23)
is the one most often used by physicists [20,21] in their modelling of neural networks (rowP

in table 1).
Finally, let us compare the four learning rules (20)–(23) after one learning step of one

patternξ. Let us suppose that a patternξ is not yet learned at timet0 so that, in view of
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(11), the quantityγi(t0) is negative. In order to store a pattern,γi should be positive. Upon
substitution of the Hebbian or symmetric learning rules (20) or (23) into (8) we find

γi(t1) = γi(t0) +
∑
j∈Vi

εij ξj (24)

for the anti-Hebbian learning rule (21) we get

γi(t1) = γi(t0)−
∑
j∈Vi

εij ξj (25)

whereas for the asymmetric learning rule (22) we obtain

γi(t1) = γi(t0) + ξi
∑
j∈Vi

εij ξj (26)

wheret0 is the initial time andt1 is the time after one learning step. By a suitable choice for
εij it canalwaysbe achieved thatγi(t1) is positive in the cases of the Hebbian and symmetric
learning rules (20) and (23), whatever the values ofξi andξj , as follows from (24). This can
neverbe achieved in the case of the anti-Hebbian learning rule (21), as is seen from (25).
Finally, in the caseξi = 0, this canneverbe achieved for the asymmetric learning rule (22),
as can be read off from (26). These simple arguments show that the Hebbian and symmetric
learning rules (20) and (23)—but not the anti-Hebbian and asymmetric learning rules (21) and
(22)—are, in principle, suitable for storage of patterns.

In the next section we will show that the requirement that synaptic changes take place in
an energetically economic way leads to a learning rule which, depending on the state of the
post-synaptic neuroni, is of the Hebbian or anti-Hebbian form (20) or (21). Hence, the naive
approach of this section, which leads to the two forms (20) and (21), is consistent with an
approach which is based on a physical principle.

4. Energy saving learning rule

In the literature, Hebb rules for the change of the synaptic connections have been derived in
various manners, many of which essentially correspond to the determination of an extremum
of some ‘Lyapunov’ or ‘cost function’, also called ‘energy function’

H(t) = − 1
2

N∑
i,j=1

Jij (t)si(t)sj (t). (27)

If Jij = Jji , equation (27) is the central equation of the Hopfield model [21]. In the case of
an Ising system of atoms with spin, an equation of the form (27) corresponds to the actual
physical energy of the spin-system.

For a system of neurons, however, an energy function of the form (27) is an ad hoc
postulate. It is not derived from or suggested by some underlying biological, biochemical or
biophysical principle. In other words, the function (27), is,a priori, totally unrelated to the
actual energy of the neural system. Consequently, a ‘derivation’ leading to a Hebb rule based
on a function of the type (27), (see e.g. [14]), is just as ad hoc as the postulate underlying it.

In this section we will show that the Hebb rule (20) and its anti-Hebbian counterpart (21)
can be found by postulating that the (biochemical) energyneeded to change the synapses—in
order to store a new patternξ—is minimal. We thus show that these particular Hebb rules—and
only these ones—are consistent with a physical principle. The argument runs as follows.

The energy1Eij to change the connectionwij (tn) to wij (tn+1) will be a differentiable
function of the magnitude of the change1wij (tn) occurring in (17)

1Eij = fij (1wij ). (28)
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If a synapse between the neuronsi andj is not changed in a learning step there is no energy
consumed. Hence, the energy change1Eij vanishes if1wij = 0, i.e.

fij (0) = 0. (29)

Moreover, we assume that a change of a synapse, whether it be a strengthening or a weakening,
can only be achieved byaddingenergy to the system. Thus, if1wij 6= 0, we put,

fij (1wij ) > 0. (30)

Equations (29) and (30) enable us to obtain a useful approximate expression for the energy
change1Eij . We first note that any differential functionf (x) can be written as a power series
f (x) = c(0) + c(1)x + c(2)x2 + · · ·. Thus, we have for the function (28), up to terms quadratic
in 1wij ,

fij (1wij ) = c(0)ij + c(1)ij 1wij + c(2)ij 1w
2
ij (31)

where, in view of (29) and (30) the coefficients have the properties

c
(0)
ij = 0 c

(1)
ij = 0 c

(2)
ij > 0. (32)

Furthermore, we take

c
(2)
ij = ci (33)

which is equivalent to the supposition that a change of connections related to different synapses
j = 1, 2, . . . , N of the same neuroni needs the same amount of energy. This assumption
simplifies some of the formulae below; it is not essential in the sense that all conclusions
remain unaltered if the simplification (33) is not used, see [23]. The total change1E in the
nth learning stepwij (tn) −→ wij (tn+1), where in principle allwij with j ∈ Vi may change, is
given by the sum of the individual changes,

1E(1wkl) =
N∑
i=1

∑
j∈Vi

fij (1wij ) (34)

or, inserting (31) with (32) and (33), by

1E(wkl(tn+1)) =
N∑
i=1

∑
j∈Vi

ci(wij (tn+1)− wij (tn))2. (35)

The positive constantsci are characteristic of neuroni.
Equation (35) will be our starting point for the derivation of the energy saving learning

rule (42). It is the general form any expression must have that describes the energy needed to
adapt the connection strengthswij as a function of their changes1wij . We now will minimize
the change in energy1E as a function of the new weightswkl(tn+1) under the constraint (12)
using the Lagrange method. This was the reason to write1E in (35) as a function of the
wkl(tn+1) rather than as a function of the1wkl = wkl(tn+1)− wkl(tn), as was done in (34).

4.1. Storage of one pattern

Let us consider at thenth learning step, i.e. at timetn, the storage of one patternξ in a network
with connections given bywij (tn). In the case of a network with changing and non-changing
weights as introduced in section 2, the expression for the change of energy is, up to second
order in the changes of the synaptic weights, given by (35). Note that a minimization of the
one condition (35) under the constraint induced by the fixed point equation (12) implies a
minimization of theN2−M changes1w2

ij (tn), since a sum of positive terms is minimal if and
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only if each term is minimal; recall thatM is the number of synapses with constant weights
wij .

For the storage of one single patternξ, one may rewrite the fixed point equations (12) in
the form

gi(wij (tn+1)) = 0 (i = 1, . . . , N) (36)

where

gi(wij (tn+1)) = κ(2ξi − 1)−
∑
j∈V ci

wij (tn)ξj −
∑
j∈Vi

wij (tn+1)ξj + θi . (37)

The method of Lagrange multipliers tells that one finds the extrema of (35) subject to the
auxiliary conditions (36) from theN2 −M equations

∂1E

∂wij (tn+1)
+

N∑
k=1

λk
∂gk

∂wij (tn+1)
= 0 (i = 1, . . . , N; j ∈ Vi) (38)

Upon substitution of (35) and (37) into this expression, we find theN2 −M relations

wij (tn+1) = wij (tn) +
1

2ci
λiξj (i = 1, . . . , N; j ∈ Vi). (39)

In the method of Lagrange multipliers the number of constraints equals the number of Lagrange
multipliersλi . Hence, there areN Lagrange multipliers. Since theN multipliersλi are unequal
to zero, it follows from theN2 −M equations (39) thatN2 −M > N , orM 6 N2 −N . We
now have obtained theN +N2 −M equations (36) and (39) for theN +N2 −M unknowns
λi andwij (tn+1).

The structure of these equations happens to be such that an explicit expression for theλi
can be found, and thereupon, an explicit expression for thewij (tn+1) can be obtained. The
procedure is as follows.

Eliminating thewij (tn+1) from (36) with the help of (39), leads to

λi = 2ci∑
k∈Vi ξk

[κ − γi(tn)](2ξi − 1) (40)

where we used the property(ξj )2 = ξj . Substituting this expression forλi into (39) yields

wij (tn+1) = wij (tn) +
1∑
k∈Vi ξk

[κ − γi(tn)](2ξi − 1)ξj (j ∈ Vi) (41)

or, equivalently (see equation (17)),

1wij (tn) = 1∑
k∈Vi ξk

[κ − γi(tn)](2ξi − 1)ξj (j ∈ Vi) (42)

whereκ is the positive parameter (11) related to the basins of attraction, and where theγi
(i = 1, . . . , N) are the stability coefficients given by (8). We will refer to (42) by the name of
non-local energy saving learning rule, since the denominator of (42) depends on the input from
all neuronsk that are connected via changing connections to neuroni. The factor between
square brackets

κ − γi(tn) = κ − (hi(tn)− θi)(2ξi − 1) (43)

depends solely upon the temporal and environmental state of the post-synaptic neuroni, that is,
on its post-synaptic potentialhi at timetn of thenth learning step, its thresholdsθi , its activityξi
and a parameterκ. The factor (43) can be positive or negative. Therefore, the learning rule (42),
(43) derived here from the assumption of minimal energy change per learning step, happens
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to coincide with the particular Hebbian learning rule (20) and its anti-Hebbian counterpart
(21) found in section 3 on purely intuitive grounds, grounds which were related to biological
plausibility.

We thus have shown that if biological neurons would adapt their connections according to
the non-local energy saving learning rule (42), this adaptation would be such that the network
would fulfil the fixed point equation (12) for a patternξ. Moreover, the learning rule (42)
guarantees that the energy needed to rebuild a neural network with connectionswij (tn) to a
network with connectionswij (tn+1) is minimal.

We conclude this section with some remarks. The energy saving learning rule is only
applicable in those situations in which the denominator is unequal to zero. This can be
translated into a restriction on theξk, k ∈ Vi . It follows that with an decreasing number
of adaptable connections there is an increasing number of patterns that cannot be stored with
the help of the non-local energy saving learning rule. This effect will be absent when the local
energy saving learning rule is used (see section 6).

When we repeat the derivation of (42) in the spin representation with time-dependent
thresholds as given by (5), we find again (42) withξ replaced by(s + 1)/2, i.e.

1Jij ∝ si(sj + 1) (44)

as could be expected. If, however, the derivation of (42) is repeated in the spin representation
with Ti taken to be a constant, as is usually done in the spin representation, one finds a result
which differs from (44), namely

1Jij ∝ sisj . (45)

This is the biologically less relevant result commonly encountered in the physical literature,
as noticed already in section 3 (see equation (23)).

4.2. Storage ofp patterns

In the previous section we saw that storage of one patternξ can be achieved via a synaptic
change1wij given by (42). Hence, storage ofp patternsξµ (µ = 1, . . . , p) might be
accomplished by repeated application of the learning rule (42). Let us therefore consider the
following learning process. In a first interval of time, [t0, t1), a first patternξ1 is stored via the
change1wij (t0), leading to the connectionswij (t1) = wij (t0) +1wij (t0), j ∈ Vi . Next, in
the interval [t1, t2), patternξ2 is stored, etc. Finally, patternξp is stored. We call this sequence
of storage ofp patterns a learning cycle.

The energy saving learning rule is a storage prescription for a new pattern, which does
not take into account, however, any constraint that would guarantee that a previously stored
patterns remain stored. Thus it may occur that storage of a new pattern will perturb, partially
or totally, the storage of an older pattern.

In section 5, on maximal learning efficiency, we will determine a learning rule which does
guarantee that new patterns are stored without wiping out previously stored patterns. However,
this learning rule will turn out to be biologically unacceptable. We therefore proceed with
the learning rule derived above. We shall derive, along the lines of reasoning of Diederich
and Opper [7], but for diluted networks, an expression for the weightswij of the synaptic
connections after infinitely many learning cycles. It will turn out that, in the end, previously
stored patterns are not forgotten.

As follows from equation (17), the connections afterR learning cycles are given by

wij (tRp) = wij (t0) +
R∑
m=1

p∑
µ=1

1wij (t(m−1)p+µ−1) (j ∈ Vi) (46)
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with tRp the time afterR learning cycles ofp patterns.
Substituting (42) into (46) we find

wij (tRp) = wij (t0) +N−1
p∑
µ=1

F
µ

i (t(R−1)p+µ−1)ξ
µ

j (j ∈ Vi) (47)

where

F
µ

i (t(R−1)p+µ−1) =
R∑
m=1

[
κ(2ξµi − 1)−

(∑
k∈V ci

wik(t0)ξ
µ

k +
∑
k∈Vi

wik(t(m−1)p+µ−1)ξ
µ

k − θi
)]

×
(
N−1

∑
k∈Vi

ξ
µ

k

)−1

(48)

is the effect onwij of patternξµ afterR learning cycles have been completed. From (48) it
follows that(
N−1

∑
k∈Vi

ξ
µ

k

)
[Fµi (t(R−1)p+µ−1)− Fµi (t(R−2)p+µ−1)]

= κ(2ξµi − 1)−
(∑
k∈V ci

wik(t0)ξ
µ

k +
∑
k∈Vi

wik(t(R−1)p+µ−1)ξ
µ

k − θi
)
. (49)

In theRth learning cycle, at timet(R−1)p+ν−1, only the patternsξ1, . . . , ξν−1 have changed
the weights of the network. Hence, theFνi with ν < µ have new values at timet(R−1)p+µ−1,
whereas theFνi with ν > µ are still identical to their values in the previous learning cycle,
i.e. are equal to the values at timet(R−2)p+µ−1. Thus, with the help of (47), the weights in the
right-hand side of (49) can be expressed as follows in terms of theF

µ

i :

wik(t(R−1)p+µ−1) = wik(t0) +N−1
∑
ν<µ

F νi (t(R−1)p+µ−1)ξ
ν
k +N−1

∑
ν>µ

F νi (t(R−2)p+µ−1)ξ
ν
k . (50)

Eliminatingwik(t(R−1)p+µ−1) from (49) with the help of (50) yields

N−1
∑
k∈Vi

∑
ν6µ

F νi (t(R−1)p+µ−1)ξ
ν
k ξ

µ

k

= −N−1
∑
k∈Vi

∑
ν>µ

F νi (t(R−2)p+µ−1)ξ
ν
k ξ

µ

k + [κ − γ µi (t0)](2ξµi − 1). (51)

This system of linear equations can be solved forF
µ

i using the Gauss–Seidel iterative method.
We first rewrite (51) in matrix notation. Next, we introduce ap × p matrix Ci , the matrix
elements of which are given by

C
µν

i := N−1
∑
k∈Vi

ξ
µ

k ξ
ν
k . (52)

We might call this matrix the ‘reduced correlation matrix’, since it correlatesξ
µ

k and ξνk
while taking into account, viaVi , the connectivity of the network. The reduced correlation
matrix is closely related to the usual correlation matrix ifVi contains all neuron indices.
We proceed by decomposing this matrixCi into matricesLi andUi in such a way that
Ci = Li + Ui . The matrixLi is a matrix with only non-zero matrix elements on and
below the diagonal andUi is a matrix with only non-zero matrix elements above the
diagonal. We also introduce the vectorsFi (R) := (F 1

i (t(R−1)p+1−1)), . . . , F
p

i (t(R−1)p+p−1)))

andGi := ([κ − γ 1
i (t0)](2ξ

1
i − 1), . . . , [κ − γ pi (t0)](2ξpi − 1)). Finally, we shall denote a

p × p unit matrix asI . We thus can rewrite (51) in the form

Li · Fi (R) = −Ui · Fi (R − 1) +Gi . (53)
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By iteratively solving this equation forFi (R), we find

Fi (R) = [−L−1
i · Ui ]

R−1 · Fi (1) +L−1
i · [I − L−1

i · Ui + · · · + (−L−1
i · Ui)

R−2] ·Gi . (54)

The symmetric matrixCi , as defined in (52), is positive definite and symmetric. It then can
be shown that the matrix−L−1

i ·Ui has eigenvalues smaller than one [22]. As a consequence,
we have

lim
R→∞

[−L−1
i · Ui ]

R−1 = 0 (55)

and it follows that, in the limitR→∞, (54) converges to

Fi (∞) = L−1
i · [I − (−L−1

i · Ui)]
−1 ·Gi

= C−1
i ·Gi (56)

whereFi (∞) = limR→∞ Fi (R). Substitution of (56) in (47) and restoring the old notation,
yields, forR→∞

wij (t∞) =

wij (t0) +N−1
p∑

µ,ν=1

[κ − γ µi (t0)](2ξµi − 1)(C−1
i )µνξ νj (j ∈ Vi)

wij (t0) (j ∈ V ci )
(57)

where(C−1
i )µν is the inverse of the matrix (52).

By substituting (57) into (12) it can directly be verified that the weights (57) fulfil (12)
for all µ (µ = 1, . . . , p). Forp = 1 this was to be expected, since the learning rule (42) was
constructed that way. Forp > 1 one could, for the same reason, expect that (12) would be
verified by (57) for the final pattern of the learning cycle,ξp. It is less transparent, however,
that (57) satisfies (12) for all patternsξµ.

The result (57) is exact for networks with a number of vanishing connections running
fromM0 = 0 toM0 = N2 − Np, i.e., valid for dilution 0 tod = 1− α, whereα = p/N .
The analogous calculation performed by Diederich and Opper for networks with emptyV ci , so
thatVi contains all indices, yields a result that coincides with the result obtained via the usual
pseudo-inverse solution [5,6] of equation (12). Hence, the following question may now arise.
Can we solve the equation (12) for a neural network whereV ci is not empty and, consequently,
the method of the pseudo-inverse in its standard form is not applicable? The answer to this
question is affirmative. In appendix B we modify the method of the pseudo-inverse so as to be
applicable to systems with changing and non-changing interactions. Solving equation (12) for
networks with changing and non-changing connections via what we have called the modified
method of the pseudo-inverse, one indeed obtains (57), as we also prove in the appendix.

Thus we have shown that the solution that corresponds to the stepwise energetically most
economic way to realize storage of patterns in a partially connected network, turns out to
be identical to the one obtained via a—modified—version of the well known mathematical
method of the pseudo-inverse applied to the fixed point equation (12). In other words, the
non-local energy saving learning rule (42) leads to the solution of the fixed point equation
(12), obtained via the modified method of the pseudo-inverse, which is based, in turn, on the
reduced correlation matrix.

We conclude this section with a few remarks. In general, the inverse of the matrixC
µν

i

cannot easily be found analytically. However, in the non-biological case that none of the
weights is kept constant, all index setsV ci are empty. As a consequence one may use, for large
N and low storage capacityα := p/N , the approximations

N−1
N∑
j=1

ξ
µ

j = a (58)



Derivation of Hebb’s rule 277

N−1
N∑
j=1

ξ
µ

j ξ
ν
j = a2 (µ 6= ν). (59)

Substitution of (58) and (59) into (52), where nowVi is the set of all indices, yields

C
µν

i = a(1− a)δµν + a2. (60)

For the inverse ofCµνi we thus obtain from (60) the simple analytical expression

(C−1
i )µν = 1

a(1− a)
[
δµν − a

ap − a + 1

]
. (61)

Using (61) in (57), leads to

wij (t∞) = wij (t0)− 1

Na(1− a)
a

ap − a + 1

p∑
µ,ν=1

[κ − γ µi (t0)](2ξµi − 1)ξ νj

+
1

Na(1− a)
p∑
µ=1

[κ − γ µi (t0)](2ξµi − 1)ξµj (i, j = 1, . . . , N). (62)

Equation (62) is an explicit expression for the weightswij of a (non-biological) network in
which all the weights, including the self-interactionswii , are present.

Kanter and Sompolinsky used the result (57) in casei 6= j for a fully connected network
without self-interactions [9]. Their ad hoc assumption that the self-interactionswii can be put
equal to zero, turns out to be justified in view of our exact result in (57) withwii(t0) = 0.

5. A learning rule with maximal learning efficiency

In the preceding section learning of a collection of patterns was achieved by repeated application
of the non-local energy saving learning rule. This learning rule was not constructed in such
a way that conservation of storage of old patterns was automatically guaranteed when a new
pattern was stored. We now address the question of whether and how storage of a new pattern
ξp+1 can be achieved without disturbing the storage of the old patternsξ1, . . . , ξp. We shall
refer to this type of learning as maximally efficient learning.

Linkevich [8] treated this problem on the basis of a mathematical model, in which
suppositions are made which cannot be true in a biological neural network. Firstly, he
treated the thresholdsTi(t), equation (5), as a vanishing constant. Moreover, his network
has symmetric connectionswij (t) = wji(t), whereas a biological network has non-symmetric
connectionswij (t) 6= wji(t). Finally, his network is fully connected, i.e. allwij (t) 6= 0.

We may improve and generalize the reasoning of Linkevich to obtain a maximally
efficient learning rule for a partially connected network with non-symmetric connections.
The calculations only hold for networks in which the thresholds are equal to the stability
coefficientsκ, i.e. θi = κ, for all i, and in the case where the initial connections are equal
to zero,wij (t0) = 0 for all i andj . As a final result we arrive, in this particular case, at the
following rule for learning with maximal learning efficiency (see appendix A)

1wij (t) =
[κ − γ p+1

i (t)][κ − γ p+1
j (t)](2ξp+1

i − 1)(2ξp+1
j − 1)∑

l∈Vi [κ − γ
p+1
l (t)]ξp+1

l

(j ∈ Vi). (63)

From (63) we immediately see that, in general,1wij is not symmetric ini andj . However,
for a network in which all connections may change we find that1wij is symmetric ini andj ,
in accordance with the result of Linkevich. Note that thei-dependent factors in the numerators
of (63) and (42) are identical, which reflects the fact that the new patternξp+1 has to obey
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the fixed point equation, both in the cases of ‘stepwise minimal change in energy’ (42) and of
‘stepwise maximal efficient learning’ (63).

The learning rule with maximal learning efficiency (63) is of the form (23), a form which
we have rejected, in section 3, on biological grounds. We therefore shall not pursue any further
the analysis of the learning rule with maximal learning efficiency in the remainder of this paper.

6. Locality of learning rules

Up to now we have not mentioned an important limitation of a biological learning rule. The
mathematical learning rule to change a weight of a network can, in principle, be local or non-
local. The second possibility must be excluded in case a weight is associated with a synapse:
there is no biological construction available in the brain to tell a specific synapse how and
when to change as a function of properties of neurons with which it has no direct contact. The
modifications must result from thelocal situation, i.e. limited to the situation spatially ‘close
enough’ to the synapse in question, and within a ‘brief span’ of time. Thus, a change1wij may
depend only on variables local, in space and time, to the neuronsi andj . The local variables
available at the synapse between neuronsi andj are the activitiesξi andξj , the post-synaptic
potentialshi andhj , and the thresholdsθi andθj . Hence, the factorsεij occurring in Hebb
rules should depend on these variables only

εij = εij (ξi, hi, θi, ξj , hj , θj ). (64)

The energy saving learning rule (42) for1wij guarantees, after repeated application,
storage of patterns in a way which is energetically efficient. The factor between square brackets
in the non-local learning rule (42) fulfils the criterion of locality. However, the learning rule
as a whole is not a local learning rule because of the factor,

1

/∑
k∈Vi

ξk (65)

which depends, because of the sum overk restricted toVi , equation (16), on the network
connectivity, and hence, not on properties related to neuronsi andj only. If we approximate
(65) by some constant,ηi say, we do obtain a learning rule that is local,

1wij (tn) = ηi [κ − (hi(tn)− θi)(2ξi − 1)](2ξi − 1)ξj . (66)

We shall refer to (66) as thelocal energy saving learning rule. The betterηi approximates a
value dictated by (65), the better this local learning rule will be with respect to its energetic
efficiency.

At this point it is important to note that the proof of convergence of section 4.2 can be
generalized, replacing everywhere the factor (65) by the constant positive factorηi . As a
final result (57) is found again, provided certain restrictions onηi are satisfied. It then can be
proved [23] that the local, biologically realizable energy saving learning rule yields the same
final valueswij (t∞) as the non-local energy saving learning rule.

As noticed in section 1, the constantηi is a neuron property, the determination of which
is outside the scope of this paper: we then would have to determine the coefficientscij in the
expression forfij (31) explicitly.

A reasonable approximation forηi can easily be obtained for a fully connected network
where all connections may change in time. For such a network we have the approximation
(58) for the denominator of (65), which implies

ηi ≈ (Na)−1 for all i = 1, . . . , N. (67)

We will use this approximation in the following section where we consider a biological network.
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7. Local versus non-local learning

In this section, we will study numerically, for a biological network with dilutiond, the local
energy saving learning rule (66) as a competitor of the non-local learning rule (42). Forηi we
take, quite arbitrarily, the constant (67). We could as well have taken 1/N or 1/(N(1− d)):
the essentials of the behaviour of the numerical results are not very sensitive for the precise
values of theηi .

In order to judge the functioning of a recurrent network with respect to its ability to store
an arbitrary collection ofp patternsξµ (µ = 1, . . . , p), we takeL sets of such collections,
and label them byξµ,m (m = 1, . . . , L), i.e. ξµ,m is patternµ of setm. The performance
of the network with respect to the patterns from themth set may be characterized by theNp
stability coefficientsγ µ,mi (i = 1, . . . , N ; µ = 1, . . . , p) defined in equation (8). The stability
coefficientsγ µ,mi should be positive (see equation (10)). Moreover, we have normalized in
such a way that theγ should be close to one. Hence, the moreγ

µ,m

i we find with values around
one, the better the network will perform.

We first define for the particular setm of p patterns the quantity:

γ m = min
i=1,...,N

{γ 1,m
i , . . . , γ

p,m

i }. (68)

Hence,γ m is the minimal value of all stability coefficients for a particular setm ofp patterns. A
network does not function ifγ m is negative, and functions better and better whenγ m becomes
closer to one (with the normalizationκ = 1). To find a number that characterizes the network
performance for an arbitrary set ofp patterns, we average the minimal valuesγ m overL
arbitrarily chosen sets,

γ = 1

L

L∑
m=1

γ m. (69)

Hence,γ is the average with respect to theL sets ofp patternsξµ. We therefore will refer to
γ as the average performance of the network. Similarly, we define the average energy change
1E

1E = 1

L

L∑
m=1

1Em (70)

where1Em is the change of energy in one learning step of themth set of patterns. Furthermore,
we define the average energy change per synapse1e, as

1e = 1E/(N2 −M) (71)

whereM is the number of non-changing synapses. We will also study the performance of
neural networks with varying dilution by considering the distribution of the stability coefficients
γ
µ,m

i . By studying numerically the quantitiesγ and1e and the distribution of the stability
coefficientsγ µ,mi , we can judge the power of the (exact) non-local energy saving learning rule
(42) compared to the (biologically feasible) local energy saving learning rule (66), (67).

7.1. Storage of one pattern

Performance. The non-local energy saving learning rule (42) and its local approximation
(66), (67) are used to store one patternξ. In order to compare the quality of the two learning
rules we have plotted in figure 1 the average performanceγ versus the dilutiond of the network
for both learning rules. We see that the non-local learning rule stores a new pattern such that
γ = 1, as could be expected since it has been designed that way. Moreover, we see that both
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Figure 1. The average performance,γ , of a network of 512 neurons as a function of its dilution
d. Dilution d = 0 means that the network is fully interconnected (wij 6= 0 for all i and j ),
dilution d = 1 means that there are no connections any more (wij = 0 for all i andj ). The one
patternξ is chosen arbitrarily, but such that the mean activitya = 0.2. The computations have
been averaged over 100 differentξ. The error bars give the standard deviation of the averaged
stability coefficientsγi (i = 1, . . . , N). The calculations are performed starting from a tabula rasa
for the weights (wij (t0) = 0) and vanishing thresholds (θi = 0). (a), (b) In the first two figures,
a comparison between the non-local energy saving learning rule (42) (upper curves) and the local
energy saving learning rule (66) (lower curves) after it has been applied (a) one, and (b) five times.
(c) A comparison of the local energy saving learning rule (66) after it has been applied one (lower
curve), five and ten (upper curve) times.

the non-local and the local learning rules lead to positive values ofγ , and, hence, lead to
storage of the patternξ. The non-local learning rule, however, leads at once toγ = 1, whereas
the local learning rule converges toγ = 1 only after repeated application. Hence, basins of
attractions of the local learning rule are smaller initially (see figure 1).

Use of energy. Furthermore, we consider the average energy change per synapse1e (71) for
the non-local and local learning rules as a function of the number of synapses in a network of
a fixed number of neurons. In the case of a single application of an energy saving learning
rule, it turns out that for the non-local learning rule1e increases as the number of synapses
decreases, while1e is constant in case of the local learning rule. This favourable situation
of remaining constant apparently is an unexpected positive effect of the approximation made
when going from a non-local energy saving learning rule to a local energy saving learning rule.

In the case of repeated application there is almost no energy effect for the non-local
learning rule, and a slight effect for the local learning rule: the energy need per synapse grows
with growing dilution (see figure 2).
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Figure 2. The average energy consumed per synapse1e in one learning step, of a network of 512
neurons as a function of its dilutiond. The one patternξ is chosen arbitrarily, but such that the mean
activity a = 0.2. The computations have been averaged over 100 differentξ. The error bars give
the standard deviation of the averaged stability coefficientsγi (i = 1, . . . , N). The calculations
are performed starting from a tabula rasa for the weights (wij (t0) = 0) and vanishing thresholds
(θi = 0). (a) The average energy change per synapse1e for the non-local energy saving learning
rule after one (upper curve) and two learning steps (lower curve, coinciding with the horizontal
axis). (b) The average energy change per synapse1e for the local energy saving learning rule
caused by the first (upper curve), second or fifth (lower curves) time that the local energy saving
rule (66), (67) is used.

7.2. Storage ofp patterns

Having studied numerically the storage of one pattern, we now turn to the storage ofp patterns.
As pointed out in section 4.2 this may be achieved through repeated application of the energy
saving learning rule.

Storage of one pattern (p = 1) could be achieved in such a way that, by construction,
all γ µ,mi (µ = 1) were equal to one in case of the non-local learning rule:γ

1,m
i = 1 for all i

andm. As a consequence, the local energy saving learning rule, which is an approximation to
the non-local one, has the property that allγ

1,m
i are ‘not too far away’ from the valueκ = 1,

i.e. they are positive. We recall that positivity of the stability coefficientsγ
1,m
i is a sufficient

criterion for a network to store what should be stored (see figure 1).
When the energy saving learning rule is used to store more than one pattern, the positivity

of all but the last stored pattern is not guaranteed. As noted before, we must allow for the fact
that storage of a new pattern may spoil the storage of older patterns. Therefore, the requirement
that the minimum of allγ µ,mi (µ = 1, . . . , p) should be positive is too strong. Forgetting this
turns out to be an inevitable consequence of storing new patterns, at least in the beginning. By
repeating the learning procedure for whole sequences of patterns more and moreγ

µ,m

i become
positive, suggesting that more and more patterns may be definitely stored.

In order to judge the performance of the network in the case of storage of more patterns,
we now picture the distribution of theγ µ,mi over the real axis. Ideally, allγ µ,mi should be equal
to κ = 1. In figure 3 the distribution has been plotted for both the non-local and local energy
saving learning rule. As one observes from figure 3, some of theγ have values smaller than
one (and even negative) whereas others have values larger than one. This is due to the fact
that storing in setm a patternξν , theγ µ,mi of the other patternsξµ (µ 6= ν) are not taken into
account in the learning step and as a consequence can be enlarged or reduced in value. We
have chosen to put the number ofγ with values outside the plotted interval in the very first
and the very last interval (see, e.g. figure 3(e)).

The general conclusion is that the local energy-saving learning rule, although in principle



282 M Heerema and W A van Leeuwen

Figure 3. The average number of stability coefficientsnγ per interval of size 0.05, divided by
the total number of the stability coefficientsγ µ,mi , given byNpL, has been plotted for a neural
network with dilution 0.6, after one or more learning cycles, for the non-local and local energy
saving learning rules. The calculations have been performed for a tabula rasa network,wij (t0) = 0,
of N = 128 neurons with vanishing thresholds (θi = 0). An average has been taken ofL = 100
sets ofp = 32 patterns. The average activity isa = 0.2. (a)–(d) The average number of stability
coefficients after 1, 5, 10 and 20 learning cycles in case of the local energy saving learning rule
(66), (67). (e)–(h). The average number of stability coefficients after 1, 5, 10 and 20 learning
cycles in case of the non-local energy saving learning rule (42).

approximative, is an excellent competitor of the non-local one. After five learning cycles the
number of negativeγ µ,mi is already negligible (see figures 3(b) and (f )), and the distribution
of theγ µ,mi are comparable.

We finally make some observations regarding other learning rules. In view of (24), the
symmetric learning rule (23) yields the same values of theγ as in the case of our asymmetric
learning rule (20). Hence, in particular, the whole analysis of this section holds true for the
symmetric learning rule as well. In other words, although the changes1wij in the weights
wij as given by the symmetric learning rule (23) are, of course, different from those given by
our asymmetric learning rule (20), the convergence properties—studied here via theγ—are
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exactly the same for the symmetric learning rule (23) and our asymmetric learning rule (20).
The ‘wrong’ asymmetric learning rule (22) does not work at all, as has been explained at the
end of section 3.

8. Summary

We have shown that two different arguments, a biological one (section 3 and a physical one
(section 4) lead to a Hebb rule of the same asymmetric form: compare equations (20), (21) and
(42). A learning rule of this form is never, or at least not often, used in the physical literature,
which, in general, is less concerned with an accurate modelling of a biological network.

The biological argument was largely based on the improbability of a change of connections
if the pre-synaptic neuron was inactive. The physical argument was based on the expression
(35) for the energy change, not on any ad hoc cost-function like (27) as has been done so far in
the literature. The local version of the energy saving Hebb rule (42), given by equations (66),
(67), may be relevant for biological systems. It has been tested numerically in section 7, and
turns out to yield storage of patterns in a satisfactory way (see in particular figure 3).
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Appendix A. Maximal efficient learning

We shall here merely verify the maximal efficient learning rule, not derive the rule, since
the derivation closely parallels the one of Linkevich [8]. In view of the special constraints
mentioned directly above (equation (63)), equation (12) reduces to∑

j∈Vi
wij (t)ξ

µ

j = 2κξµi (µ = 1, . . . , p). (A.1)

Similarly, the solution (57) of (12) reduces to

wij (t) =

N
−1

p∑
µ,ν=1

2κξµi (C
−1
i )µνξ νj (j ∈ Vi)

0 (j ∈ V ci ).
(A.2)

In order to store a new patternξp+1, the new weightswij (t ′) have to obey the equations∑
j∈Vi

wij (t
′)ξµj = 2κξµi (µ = 1, . . . , p + 1). (A.3)

The weightswij (t ′) are related to the weightswij (t) by

wij (t
′) =

{
wij (t) +1wij (t) (j ∈ Vi)
wij (t) (j ∈ V ci )

(A.4)

where thewij (t) are the connections after storage of the patternsξ1, . . . , ξp as given by
equation (A.2) and the1wij (t) are given by (63).
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Inserting (A.4) with (A.2) and (63) into the left-hand side of (A.3) yields

∑
j∈Vi

wij (t
′)ξµj =

 2κξµi +
∑
j∈Vi

1wij (t)ξ
µ

j (µ = 1, . . . , p)

2κξµi (µ = p + 1).
(A.5)

The right-hand side of these equations is equal to that of (A.3) if∑
j∈Vi

1wij (t)ξ
µ

j = 0 (µ = 1, . . . , p). (A.6)

In order to show that (A.6) holds, we first decomposeξ
p+1
j according to

ξ
p+1
j =



p∑
µ=1

aµξ
µ

j +ψp+1
j (j ∈ Vi)

p∑
µ=1

a
µ

j ξ
µ

j +ψp+1
j (j ∈ V ci )

(A.7)

whereaµ, aµj andψp+1
j have been taken such that†∑

j∈Vi
ξ
µ

j ψ
p+1
j = 0 (µ = 1, . . . , p). (A.8)

Using (A.2) and (A.8) one may prove the auxiliary relation∑
k∈Vj

wjk(t)ψ
p+1
k = 0. (A.9)

The proof of (A.6) is now straightforward. First, substitution of (63) into (A.6) yields∑
j∈Vi

1wij (t)ξ
µ

j ∝
∑
j∈Vi

[
2κξp+1

j −
∑
k∈Vj

wjk(t)ξ
p+1
k

]
ξ
µ

j (µ = 1, . . . , p). (A.10)

Then, substituting the decomposition (A.7) in (A.10), and using (A.1), (A.8) and (A.9) we see
that this expression vanishes, which proves (A.6). Hence, the left-hand side of (A.3) equals
the right-hand side of (A.3) for a learning rule given by (63).

Appendix B. Modified method of the pseudo-inverse

Consider thep sets ofN linear equations

N∑
j=1

wijx
µ

j = aµi (i = 1, . . . , N;µ = 1, . . . , p) (B.1)

wherexµj andaµi are known constants (j = 1, . . . , N;µ = 1, . . . , p). TheN2 unknownswij
are not determined as long asp < N . LetVi be the subset of indicesj with the property that
wij is a solution of the set of equations (B.1), and let the complement of the setVi with respect
to the total set of indices (1, . . . , N), denoted byV ci , contain the indicesj with the property
that thewij have the pre-described constant valuesbij , i.e.

wij = bij (j ∈ V ci ). (B.2)

† In the case where all connections may change in time, the index setsVi are all equal to the set of all indices. Then
the equations (A.7) withj ∈ V ci disappear and (A.8) amounts to the condition that the vectorψp+1 is orthogonal to
the vectorsξµ (µ = 1, . . . , p). Hence, in this particular case there arep +N restrictions (A.7) and (A.8) forp +N
variablesaµ andψj .
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chosen in such a way that the system of equations (B.1) does not become incompatible. If the
setV ci is empty, a solution of (B.1) can be obtained via the Moore–Penrose pseudo-inverse
matrix [5,6]. We want to obtain a solution forwij of (B.1), (B.2) in the case whereV ci is not
empty, and the pseudo-inverse matrix cannot be used directly. To that end, we construct a new
set of equations, closely related to (B.1), (B.2), which can be solved via the pseudo-inverse.
We refer to this construction as themodified method of the pseudo-inverse.

We first define a new set of variablesw̃ij according to

w̃ij = wij − bij (i, j = 1, 2, . . . , N) (B.3)

wherebij are arbitrary in casej ∈ Vi . We then have

w̃ij =
{
wij − bij (j ∈ Vi)
0 (j ∈ V ci ).

(B.4)

The under-determined set ofpN linear equations (B.1), (B.2) can now be rewritten∑
j∈Vi

w̃ij x
µ

j = ãµi (µ = 1, . . . , p) (B.5)

where
ã
µ

i = aµi −
N∑
j=1

bij x
µ

j . (B.6)

Note that (B.5) cannot be solved with the help of the pseudo-inverse, since the summation is
only with respect to a restricted set of indicesj ∈ Vi . We therefore consider a new set ofpN
linear equations, namely

N∑
j=1

vij y
µ

j = ãµi (µ = 1, . . . , p). (B.7)

The relation of (B.7) to (B.5) can be made clear by taking

y
µ

j =
{
x
µ

j (j ∈ Vi)
0 (j ∈ V ci )

(B.8)

since then the set of equations (B.7) for theN2 unknownsvij (i, j = 1, 2, . . . , N) becomes
identical to the set of equations (B.5) for the unknownw̃ij (i = 1, . . . , N; j ∈ Vi). The
equation (B.7) can be solved with the help of the pseudo-inverse. The solution reads

vij =
p∑

µ,ν=1

ã
µ

i (C
−1)µνyνj (i, j = 1, 2. . . . , N) (B.9)

whereCµν is the usual correlation matrix [24]

Cµν =
N∑
k=1

y
µ

k y
ν
k . (B.10)

If we use (B.8), the matrixCµν becomes what we have called the ‘reduced correlation matrix’,
given by

C
µν

i =
∑
k∈Vi

x
µ

k x
ν
k . (B.11)

The modified correlation matrix takes into account the modifications in the usual correlation
matrix due to the particular network architecture as dictated by the index setVi . The solutions
vij become, using (B.8),

vij =


p∑

µ,ν=1

ã
µ

i (C
−1
i )µνxνj (j ∈ Vi)

0 (j ∈ V ci ).
(B.12)
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Hence, the solution (B.12) turns out to be compatible with (B.4) forj ∈ V ci . Putting now

w̃ij = vij (i, j = 1, 2, . . . , N) (B.13)

we have obtained a solution for (B.5), as follows by comparing (B.7) and (B.5). In this way
we find, transforming back from̃wij towij with the help of (B.3), and substituting (B.6), the
final result for the solution of the under-determined set of equations (B.1), (B.2):

wij =

 bij +
p∑

µ,ν=1

[aµi −
N∑
j=1

bij x
µ

j ](C−1
i )µνxνj (j ∈ Vi)

bij (j ∈ V ci ).
(B.14)

We recall that thebij are arbitrary forj ∈ Vi , and prescribed forj ∈ V ci . Notice that the
solution (B.14) is not unique because of the arbitrary constantsbij (j ∈ Vi).

We want to solve (12) for a network with changing connectionswij if j ∈ Vi and non-
changing connections ifj ∈ V ci . Applying (B.14) with

x
µ

i = ξµi
bij = wij (t0) (i, j = 1, 2, . . . , N)

a
µ

i = κ(2ξµi − 1) + θi

(B.15)

we obtain at once (57). We thus arrive at the observation that the energy saving solution
(57) coincides with the solution (B.14), obtained with the help of the modified method of the
pseudo-inverse.
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