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Abstract. Onthe basis of the general form for the energy needed to adapt the connection strengths
w;; of a network in which learning takes place, a local learning rule is found for the changes

This biologically realizable learning rule turns out to comply with Hebb’s neuro-physiological
postulate, but is not of the form of any of the learning rules proposed in the literature.

The learning rule possesses the property that the energy needed in each learning step is
minimal, and is, as such, evolutionary attractive. Moreover, the pre- and post-synaptic neurons are
found to influence the synaptic changes differently, resulting in an asymmetric connection matrix
w;;, a fact which is in agreement with biological observation.

It is shown that if a finite set of the same patterns is presented over and over again to the
network, the weights of the synapses converge to finite values.

Furthermore, it is proved that the final values found in this biologically realizable limit are
the same as those found via a mathematical approach to the problem of finding the weights of
a partially connected neural network that can store a collection of patterns. The mathematical
solution is obtained via a modified version of the so-called method of the pseudo-inverse, and has
the inverse of a reduced correlation matrix, rather than the usual correlation matrix, as its basic
ingredient. Thus, a biological network might realize the final results of the mathematician by the
energetically economic rule for the adaption of the synapses found in this article.

1. Introduction

In this paper we consider some theoretical aspects of the changes of the connections as they
could take place between the nerve cells, or neurons, of the brain. In a learning process,
these connections change continuously, and are adapted in such a way that a particular task,
e.g. the storage of patterns, is achieved. The answer to the question in which way the
connections between neurons actually change in response to external stimuli, can only be
given by experiment, not via any theoretical discussion. Although there is a lot of experimental
activity related to the study of the functioning of neurons, there is not yet a unique answer to
this question: see, e.g. the 1998 review articles of Buonomano and Merzenich [1], Marder [2],
or the 1990 review article of Browet al [3].

In the 1940s, the Canadian psychologist Hebb conjectured (in his well known book
The organization of behaviour—A neuro-physiological thelddy that the changes of the
connections between the neurons take place according to a ‘neuro-physiological postulate’ that
nowadays is referred to as Hebb's rule: ‘When an axon of&é&lnear enough to excite a cell
B andrepeatedly or persistently takes partin firing it, some growth process or metabolic change
takes place in one or both cells so tiAas efficiency, as one of the cells firing), is increased’.
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Thus Hebb’s rule is a quantitative statement on the enhancement of synaptic efficiency of signal
transmission, but does not state qualitatively, by some mathematical formula, to what extent.
Nowadays, there is plenty of evidence that synapses do indeed change in alearning process
and since the appearance of Hebb’s article many quantitative proposals, all complying with
Hebb's postulate, have been put forward. This paper is also concerned with such a quantitative
expression for the synaptic changes. However, rather than postulating a learning rule, we
derive it from some underlying principle. As a final result, we find a learning rule for the
adaptation of the strengths, or weighis;, of a synapse connecting a post-synaptic nearon
and a pre-synaptic neurgn Its explicit form reads:

Aw;j(ty) = nilc — {hi(t,) — 6;}(286; — D](25; — 1)§;. 1)

This—asymmetric—learning rule givesw;;, the positive or negative increment of the weight
w;;j, as a function of the activities andé; of neurons and; of the synapse that connects
these neurons. In our convention, the actiitgf a neuron equals 1 if it generates an action
potential, and O if itis quiescent. The functibiis the potential difference between the interior
and the exterior of a neuron, at its axon hillock. The formula gives the change af, tiffige
indexn denotes the time at theth learning step in the process of learnimg=€ 1, 2, ...).

The threshold potentiaf}, is a constant, typical for the neurénn question. It equals, by
definition, the potential that must be surmounted, at the axon hillock of népimorder that

it will fire. The quantities;; andx are also constants. Their precise identification, as variables
related to individual and collective neuron properties, is outside the scope of this paper. The
learning rule (1), which constitutes our main result as far as biology is concerned, has a form
that is compatible with Hebb’s postulate.

It is a well known fact that, for a given neural net with strengthsof the weights, there
areinfinitely many ways to choose changasy;; of the weights such that the network will
perform storage and retrieval of a new pattern. The derivation of our learning rule is based on
the assumption that, at each instant of the learning process, the energy needed to change the
neural network in order to store a new pattern, is minimal. The requirement that, at each step
n of the learning process, the energy needed is as low as possible, turns out to be sufficient
to uniguelydetermine the way in which the weight of each synapse connecting two arbitrary
neurons; andj should be changed, and thus fixes a learning rule for the adaptation of the
weights of all the connections. We will call this learning rule the ‘non-local energy saving
learning rule’, since it turns out to depend on the state of activibllafieuronsj from which
neuroni receives its input. It is given by equation (42) below.

It is impossible, however, for a synapse connecting two neuramsl j, to realize the
non-local energy saving learning rule (42) exactly, as follows by a careful inspection of formula
(42). In fact, in order to adapt itself according to this learning rule, a synapse betvaeen
j would have to ‘know’ the individual states of activify of all pre-synaptic neurorisfrom
which neuroni gets its input, whereas a synapse only ‘feels’ the states of the two naurons
andj which it connects. The best a synapse can do in order to compete with the performance
of the non-local learning rule (42) is to adapt itself according to a learning rule that is a
local approximation of the non-local learning rule. It is this local approximation, given the
expression (1) above, which constitutes our main biological result. We will refer to it as the
local energy saving learning rule, to distinguish it from its non-local counterpart. The point of
locality of learning rules is discussed in more detail in section 6.

A numerical estimation of the performance of the local learning rule, equation (1), versus
to the non-local one, equation (42), is made in section 7. Local learning turns out to be a
very effective alternative to non-local learning, regarding both its power to store and retrieve
patterns and its capacity to be economic in use of energy.
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In order to arrive at the non-local energy saving learning rule, we think of a neuron as a
living cell. A living cell, as a physical object, is a stationary non-equilibrium system. The
basic assumption of this paper is that any type of change of the cellular cleft can only be
effected byaddingenergy to the non-equilibrium system, independent of whether it leads to
a strengthening or a weakening of the synaptic efficacy. This is a plausible, but not totally
trivial postulate, which can only be falsified by a detailed biophysical or biochemical study
of the process of change of the synapse. In our setup, the mere assumption that extra energy
is needed for any change of the synapse, independent of whether it leads to an increase or a
decrease of its efficiency, replaces Hebb’s postulate on efficiency cited above.

Before starting the derivation of the energy saving learning rule itself, we discuss, in
section 3, the 81 possibilities which, in principle, are compatible with Hebb’s postulate.
In particular, we consider these mathematical realizations with respect to their biological
plausibility. We then find that, in fact, out of the 81 learning rules that are possible in principle,
only two are also biologically plausible. These are the learning rules (20) and (21).

The actual derivation of the energy saving learning rule is performed in section 4. To
our satisfaction, it general form turns out to imply the two forms (20) and (21) expected in
the preceeding section on biological grounds only. Thus our ‘principle of minimal change of
energy’, which might leads priori, to any of the 81 possibilities for a realization of a learning
rule for the change of weight of a synapse, happens to yield precisely those rules which are
biological plausible.

In section 5 we consider the situation that the changes of the connections do not take place
in an energetically optimal way, but in such a way that patterns are not partially wiped out
when new patterns are learned as is the case for learning based on the energy saving learning
rule (1) or (42). We then ask ourselves the question: which learning rule would then be found
for the changef\w;; of the synaptic weights? Again, its general form turns out to comply
with one of the 81 possible realizations of the Hebb rule considered in section 3, but, in this
case, it is a biologically improbable one. We therefore do not pursue this path any further.

The question might arise whether the non-local energy saving learning rule converges, in
the limit that the number of learning steps tends to infinity. And, if so, to what values they
then would converge. The answers to these questions are the subject of section 4.2.

There exists a well known way to obtain the final form of the connection stremgjfos
an artificial neural network that can store and retrieve a set of patterns: it goes under the name
‘pseudo-inverse solution’ [5, 6]. By inversion of a certain matrix related to the patterns to be
stored, the so-called correlation matrix, one can obtain, without any limiting procedure, final
values for the weights);; of the connections of a neural network that yield the desired result
of being capable of storing and retrieving a collection of patterns.

We will consider an assembly &f neurons, wher&/ is a number relevant for a certain
subunit of the brain, such as a cortical hyper-column, for whicks of the order of 16-
10°. Although such subunits are highly interconnected, they are partially connected in the
mathematical sense, since each neuron is connected to only a finite fraction of the subunit
considered. Moreover, biological neurons are not self-connectedy;j.e- 0. These two
biological facts force us to study, from the very beginning, diluted, or partially connected,
networks. Inthe limit that the dilution tends to zero, we rediscover, if we relax the requirement
that the self-connections all vanish, some of the well known results for fully connected
networks, in particular those of Diederich and Opper [7], and of Linkevich [8].

A possible question one might now ask is: is there any relation between the final values
obtained for the weights);; obtained in the limit of an infinite number of learning steps,

n — 0o, on the one hand and the values obtained via the pseudo-inverse method on the other
hand? The answer to this question is as simple as it is amazing: the results are identical. The
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proof of this point is the subject of appendix B, where the method of the pseudo-inverse is
modified in such a way that it can be used for partially connected networks. Thus, as a final
conclusion, we can state that: (i) the assumption of economy of energy in a learning step,
(i) the well known method based on the pseudo-inverse of the correlation matrix and (iii)
the biological plausibility of a learning rule are three members of a trio that work in concert.
We want to stress, once again, that the question of whether the evolutionary development of
the brain actually has led to an adaptation process of the synapses that is energetically the
most economical, is, as yet, experimentally, an open question. It is not excluded that the
realization of the changes of the synapses might take place in a biologically less probable,
or an energetically less favourable way. Our only certainty is that economy of energy and
biological probability go hand in hand.

Usually, neural networks have been modelled in the so-called spin representation, which,
in principle, can easily be translated to the so-called binary representation, which models the
biological reality more directly. In particular, in the binary representation the thresholds for
activation of a neuron can be taken constant, in accordance with the biological reality. In the
spin representation, however, the actual biological reality in a learning process can only be
modelled via the use of a time-dependent threshold, a fact which is often overlooked: one
erroneously treats the neuron thresholds in the spin model as constants (see, e.g. [9,10]). We
therefore have chosen not to use the spin, but the binary representation.

In our study of the connections; and the way in which they change in a learning process,
we will neglect two constraints set by nature. Firstly, the fact that, for an actual ngutan
magnitudes of the synaptic connections are within some interval characteristic for the synapse
in gquestion. Secondly, the fact that, according to Dale’s law, the connections related to one
and the same pre-synaptic neuron either are only excitatory or only inhibitory. Furthermore,
we treat biological neurons as McCulloch and Pitts neurons, i.e. their response to input is
according to the rule (2), (3) below. We thus also neglect the retardation which results from the
finite speed of transmission of signals through axons and dendrites. A way retardation could
be included in a model has been put forward in [11].

For an introduction to this paper, see textbooks such as [12-14].

2. Attractor neural network model

Dynamics. We consider a network d@f interconnected neurons in the binary representation,
i.e. each neuron can have a state= 1 (the neuron producemeaction-potential ospike
orx; = 0 (the neuron is quiescent). The post-synaptic potential of nauabtime: of this
system of neurons is modelled by

N
hi(t) = wi; (0)x;(1) (i=1...,N) )
j=1
where thex; (¢) are the input signals at timeand where they;; (¢) are theweights also called
synaptic strengther synaptic efficacieat timer. A weightw;; takes into account the overall
effect of a synaptic connection between a post-synaptic neusad a pre-synaptic neurgn

and may be positive (excitation), negative (inhibition) or zero (no synaptic connection). The
weightsw;;, like the potentialg:;, are expressed in volts. The output of neufémsupposed

to be given by the dynamical equation

xi(t + A1) = Oulhi (1) — 6;) (i=1...,N) (3)

where theconstant; is the activation threshold characteristic of neuraand whereAr is
some discrete time step. A typical value fpris 10 mV [15]. The symboby stands for the
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Heaviside step function, which equals one for positive arguments and vanishes otherwise.
In the so-called ‘spin representation’, active and non-active states of néuaoe

characterized by; = 1 ors; = —1, respectively. In this representation, the dynamical
equation (3) can be rewritten as
N
si(t+At)=Sgn{ZJij(t)sj(t)—7}(t)} (i=1...,N) (4)
j=1

where the time-dependent ‘coupling constamts’are related to the biological weights;;
throughJ;; = w;;/2 and wheres; = 2x; — 1. The time-dependent ‘thresholdg'(¢) are
related to the constant biological threshadgdsccording to

N
Ti(t) =0, — Y _ Ji(t) (i=1...,N). (5)
j=1

In the literature the threshold%(z) are usually treated as a constant; most often the constant is
taken to vanish [9,10]. This seemingly innocent fact changes, of course, the dynamics (4) of
the system in a non-trivial way. As a consequence, the results obtained for, e.g. the adaptation
of the coupling constants differ from those obtained when the actual biological dynamics (3) is
used (cf equations (44) and (45)). Hence, when modelling adaptation processes of biological
neurons with constant thresholds, the use of the binary representation is obligatory.

Neural networks have two timescales, one related to the rate of change of the synaptic
efficaciesw;; and one related to the spiking activity of a neuron. The latter time is of the
order of milliseconds, the former is less well-defined, but can be estimated to lie somewhere
between seconds and days: it is a time related to the rate of learning of a brain. Herce, the
occurring in equation (3) is of the order of milliseconds. When the process of adaptation of
the weights has come to an end ihg remain constant.

Fixed points. We want to determine the synaptic efficacies of an attractor neural network, i.e.
of a network which can recall a numbersay, of previously stored patterns. The realization
of a recall corresponds to a fixed network state of the network dynamics (3). Let us denote the
patterns of activity, or patterns, B = (¢;,...,&y), Wherew = 1,..., p. Thusg/ =1 or
g =0withi =1,..., Nandu =1, ..., p. The probability that a neuranis in the state 1
or 0 is supposed to be given byor (1 — a) respectively. The quantity is usually called the
mean activity of the neural net. For random patterns the mean acitivdtgiven by 05. In
biological neural networks, however, the mean activiig smaller [16].

Thus, a network which has stored, someh@wpatterns¢” satisfies the fixed point
equations

x;(t + At) = x; (1) for x;(t) =¢&/" i=1...,N;u=1,...,p). (6)
Hence, equations (3) and (6) yield th&y equations
N
& = 9H{ Z wij (DE] — 9i} )
j=1

for N2 unknownw;;.
Let us now introduce so-called stability coefficiepf§[17]:

vl = (W (1) — 0 (28] — 1) (8)
with A} the post-synaptic potential

N
hi(6) = wij (DL 9)
j=1

J
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Remark thay,* depends, via;', on all weightsw;;, i.e.

v (@) =y (wia(0), wia(t), ..., wy_1n (1), wyn(1)).

One easily checks, by distinguishing the cagés= 1 ands/* = 0, that an equivalent way
to express the equalities (7) are th& inequalities

‘() > 0. (10)

The inequality sign in (10) reflects that fact that the set of equations (7) is under-determined,
i.e. the equations (10) are necessary but not sufficient equations to determine uniquely a set of
weights of a network which has stored some patterns.

An arbitrary patterdX (¢) will only be recalled if it evolves in time to one of the fixed points
&*. Therefore, it is not sufficient for a network to have fixed points: for each optfired
points that is related to a retrieval of a pattéf there must exist a whole neighbourhood of
points aroung” which is such that all points of this neighbourhood will evolvé‘tainder the
dynamics (3). In technical terms, the fixed poigtsmust have a non-zero basin of attraction.
For this reason, one may introduce [7, 10, 18] a positive threshadd demand the stronger
inequalities

Viﬂ(t) ZK (11)

to hold, rather than the inequalities (10), which are equivalent to the fixed point equations (7).
The larger the threshold, the larger the basins of attractions can be expected to be [10, 18].
In order to solve equation (11) for the unknown weiglhts, we consider it as far as its
equality sign is concerned. Then (11) can be recast in the equivalent form
N
Zw,-j(t)é;'f — 6 =x(28" -1 (i=1...,N:u=1,....,p (12
j=1
as may be checked by puttig equal to 1 or 0. TheN equations (12) do not fix uniquely
the N2 weightsw;; aslong ap < N, the case we consider throughout this article. The storage
capacityx, defined asx := p/N, of a neural network is maximally equal to one for networks
described by equations (12).

Various types of networks.Itis our aim to take into account specific aspects of the connectivity
of a biological network. In a biological neural network a neuron does not excite or inhibit
itself, i.e. for allz we have for the self-interactions (or self-connections)

w;;(t) =0 (i=1,...,N). (13)
Moreover, a biological network will, in general, be partially connected: each neuron will have
some neighbourhood outside which there are no connections, i.e.

w;j (t) = 0 (14)

for a given set of neuron pairg (j). We shall call a network in which a (finite) fraction of the
weights vanish, a diluted network. L&t be the number of pairs,(;) for whichw;; () = 0.
Then the dilutiord of a network ofN neurons is defined as

d = Mo/N?. (15)
Hence, the dilutior/ is a number between 0 and 1.
Let us slightly generalize the above by distinguishing in a learning process changing

and non-changing connections; (¢) instead of changing and vanishing connections. Let us
consider, for a moment, one particular neurofrhen one may define the index sets

Vi = {jlw;; () # w;;j(to)} V= {Jlwi (1) = w;j(t0)}. (16)
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ThusV; contains the indices related to all connections of neurtat, in a learning process,
change in time, whereas its compleméhnt, contains the indices related to all non-changing
connections. In particuldrS contains the index of neuraritself (w;; (1) = w;; (fo) = 0), the
indices of neurong which have no connections with neuron(w;;(t) = w;;(to) = 0),

and the indices of neurong which have connections with fixed strengths with neuion
(wi; (1) = wi;(t0) # 0). Thus, diluted networks are a subclass of networks with changing and
non-changing connections. By specifying, via equation (16), which connections are absent,
the network connectivity is completely defined. For later use, we introifidhe number of

pairs ¢, j) for whichw;; (t) = w;;(fo) is constant, but not necessarily equal to zero.

3. Learning prescriptions—Hebb rules

In this section we consider all mathematical realizations which are, in principle, compatible
with Hebb’s postulate. We argue that, in our view, only two of them, namely (20) and (21)
are biologically plausible, in contrast to the realizations (22) and (23) used in the literature. In
order to show this, let us consider a network with changing and non-changing connections, in
which a learning process takes place with the purpose of storing a collectiopaifernst*.

Let the weights at time, be given byw;; (z,). After a learning step the new weights will be
given in terms of the old weights by

w;j () + Aw;;(t,) (Jev)
w;j (1) (JeVvH
where Aw;;(t,) is the increment at time,. A learning rule is a recipe for the changeaw;;

as a function of the states of the post-synaptic neuiamd the pre-synaptic neurgnwhen a
pattern £, ..., &y) is presented to the network. There are four possible sttes ) that the
post- and pre-synaptic neuron can have, namel9),Q0, 1), (1 0) and (1 1), each of which

may lead to one of the three possible changes\for;: positive, negative or zero. Hence, in
principle there are’3= 81 possible learning rules
Aw;j (5,8 —> Aw;; (6, §)). (18)

It is biologically improbable that connections will always grow or will always decrease.
Therefore, we exclude learning rules for whighw;; (§;, §;), for all four statesg;, &;), are
either always positive, or always negative (reason of rejectiof table 1). Moreover, in
our opinion, it is biologically probable that a connection between a pre-synaptic nguron
and a post-synaptic neurerdoes not change if the neurgrdoes not contribute to the post-
synaptic potential of neuron i.e. if £; = 0. Therefore, we exclude learning rules for which
Aw;; (&, & =0) #0with& = 0, 1 (reason of rejectionh of table 1).

Excluding these improbable learning rules, we are left with no more than two learning
rules, as may be verified by a simple inspection of table 1. One of these corresponds to the
assignments

(0,0)}—> Aw,‘j =0 (0, l)l—> Awij <0
(columnH in table 1), which can be expressed compactly by the formula
Aw;; = €;(25 — 1)§; (20)

where thes;;, here and elsewhere in this paper, are positive numbers. Similarly, the other one
can be expressed by the formula

Aw;; = —€;; (25 — D§; (21)

wjj (ta+1) = { a7

(19)
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Table 1. The 81 possible ways in whicty;; may change as a function of the activities of the
post-synaptic neurohand the pre-synaptic neurgncan be read off from the 81 columns of the
table. Each row may have up arrowfs)(down arrows () or zeros, indicating a strengthening,

a weakening or no change of a synaptic connection. The biological reason to reject a column
is indicated by the lettea or b immediately below the column. The reasons ardghere either

is only strengthening or weakening of the synajisethere is a change of the synaptic strength

if the pre-synaptic neurojj is inactive. From the table we can read off that 78 possibilities are
excluded for reasoa and/orb. The column with only zeros is excluded for obvious reasons. The
two possibilities for the Hebb rule which we are left with are indicated by the synmia@ad A:

the first corresponds to what is called Hebbian learning, the second to what is called anti-Hebbian
learning. If we do not reject a possibility for reasigrihere are many more possible Hebbian rules.
The possibility indicated by; was used by Gardner [19]. The one preferred by physicists in their
modelling of neural networks, has been indicated by the syribol

(i, 7) G H P
0,000 0 0 0 0 0 0o 0 Ooft ¢ttt t t 1t |+ L L L L L1 L
on{t +t 0o o0 o0 | & Lfttt 00 o0 L 4 Lftt Tt 00 0 | |
rLoyft o L+ 0 L t 0 4ft 0 Lt 0 4 o Lft 0o Lt oo |t 0|
L et e e e e e e e e A
b b b bob blb6 b b b b b b b b|b b b b b b b b b
(i,4) A
0040 0 0 0 0 0 0 0 Oft + t At 1t L L L L L L L L
on{t + 4+ 0o o0 o0 } L 4fttt o0 o0 L | Lftt Tt 0o 00 | ] |
Loy|t o ¢ t 0 4 T 0 4|t O L t O L O 4|t O Lt O 4 T o0
I NI I N e
b bob b b b6 b b b b b b b b|b b b b b b b b b
(@)
0010 0 0 0 0 0 0o 0 Ooft t t t t t 1t |+ LA L L L L
on{t +t 0 o0 0o ¢ & 4Lfttt 0o 0 o0 L4 Lftt Tt 00 0 | |
rLoyf(t+ o L+ 0 L t 0 4ft 0 Lt 0 4 O Lft 0 Lt oo |t 0
(Ly|0o 0 0 0 0 0 0 0 0[O0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0
a a a a a a a a a a a a a a
b b b b b blb6 b b 6 b b b b b|b b b b b b b b b

(columnA in table 1).

Learning can be classified as Hebbian or anti-Hebbian. Hebbian learning is characterized
by the fact that, if both neurorisand j are active Aw;; is positive, whereas for anti-Hebbian
learningAw;; is negative. So, the two remaining learning rules (20) and (21) are Hebbian and
anti-Hebbian, respectively. The learning rules (20) and (21) have, to the best of our knowledge,
not been used, as yet, in mathematical or physical studies that tried to model biological neural
systems (see, e.g. [11, 20]).

If we allow for the possibility thatAw;; # O if the pre-synaptic neurop is inactive
(¢; = 0), there are many extra possible mappings (18), of which we mention the two most
often encountered in the literature

Aw;j = €;6(25; — 1) (22)
Aw;j = €;(25 — D)(28; — 1). (23)
The learning rule (22) was used, e.g. by Gardner [19], in studying the retrieval properties of a
neural network with an asymmetric learning rule (coluéhim table 1). The learning rule (23)
is the one most often used by physicists [20, 21] in their modelling of neural networks(row
in table 1).

Finally, let us compare the four learning rules (20)—(23) after one learning step of one
pattern€. Let us suppose that a pattegris not yet learned at timg) so that, in view of



Derivation of Hebb's rule 271

(12), the quantityy; (ro) is negative. In order to store a pattegpn should be positive. Upon
substitution of the Hebbian or symmetric learning rules (20) or (23) into (8) we find

Yi(t) = yi(to) + Z €&; (24)
Jjev;
for the anti-Hebbian learning rule (21) we get
yi(t) = vi(to) — Y €ij&j (25)
Jjevi
whereas for the asymmetric learning rule (22) we obtain
yi(t) = yilto) +& Y _ €t (26)
jevi

wherery is the initial time and; is the time after one learning step. By a suitable choice for

€;; it canalwaysbe achieved that; (z1) is positive in the cases of the Hebbian and symmetric
learning rules (20) and (23), whatever the value$; @nd¢;, as follows from (24). This can
neverbe achieved in the case of the anti-Hebbian learning rule (21), as is seen from (25).
Finally, in the case&; = 0, this cameverbe achieved for the asymmetric learning rule (22),

as can be read off from (26). These simple arguments show that the Hebbian and symmetric
learning rules (20) and (23)—but not the anti-Hebbian and asymmetric learning rules (21) and
(22)—are, in principle, suitable for storage of patterns.

In the next section we will show that the requirement that synaptic changes take place in
an energetically economic way leads to a learning rule which, depending on the state of the
post-synaptic neuroh is of the Hebbian or anti-Hebbian form (20) or (21). Hence, the naive
approach of this section, which leads to the two forms (20) and (21), is consistent with an
approach which is based on a physical principle.

4. Energy saving learning rule

In the literature, Hebb rules for the change of the synaptic connections have been derived in
various manners, many of which essentially correspond to the determination of an extremum
of some ‘Lyapunov’ or ‘cost function’, also called ‘energy function’

N
H(t)y=—3 Y Jij0)si()s; (1) (27)
i,j=1
If Ji;; = Jj;, equation (27) is the central equation of the Hopfield model [21]. In the case of
an Ising system of atoms with spin, an equation of the form (27) corresponds to the actual
physical energy of the spin-system.

For a system of neurons, however, an energy function of the form (27) is an ad hoc
postulate. It is not derived from or suggested by some underlying biological, biochemical or
biophysical principle. In other words, the function (27),aspriori, totally unrelated to the
actual energy of the neural system. Consequently, a ‘derivation’ leading to a Hebb rule based
on a function of the type (27), (see e.qg. [14]), is just as ad hoc as the postulate underlying it.

In this section we will show that the Hebb rule (20) and its anti-Hebbian counterpart (21)
can be found by postulating that tHadchemica) energyneeded to change the synapses—in
order to store a new patteghr—is minimal. We thus show that these particular Hebb rules—and
only these ones—are consistent with a physical principle. The argument runs as follows.

The energyAE;; to change the connectian;; (t,) to w;;(7,+1) will be a differentiable
function of the magnitude of the change;;(z,) occurring in (17)

AE,‘j = f,j(Aw,j) (28)
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If a synapse between the neurarend j is not changed in a learning step there is no energy
consumed. Hence, the energy changeg;; vanishes ifAw;; = 0, i.e.

fij(0) =0. (29)

Moreover, we assume that a change of a synapse, whether it be a strengthening or a weakening,
can only be achieved ddingenergy to the system. Thus,Afw;; # 0, we put,

f,-j(Aw,-j) > 0. (30)

Equations (29) and (30) enable us to obtain a useful approximate expression for the energy
changeA E;;. We first note that any differential functiofix) can be written as a power series

f(x) =c9+cDx +c@x2+.... Thus, we have for the function (28), up to terms quadratic

in Awij,

fij(Aw;;) = c;?) +c£l.1)Awij + cl.(J?)Awizj (31)
where, in view of (29) and (30) the coefficients have the properties

ci(?) =0 cf‘]p =0 cff) > 0. (32)
Furthermore, we take

@ = (33)
which is equivalent to the supposition that a change of connections related to different synapses
Jj =1,2,..., N of the same neurohneeds the same amount of energy. This assumption

simplifies some of the formulae below; it is not essential in the sense that all conclusions
remain unaltered if the simplification (33) is not used, see [23]. The total cha#g® the

nth learning stepu;; (1,) — w;; (,+1), Where in principle allv;; with j € V; may change, is
given by the sum of the individual changes,

N
AE(Awg) =) Y fij(Awy) (34)

i=1 jeV;

or, inserting (31) with (32) and (33), by

N
AEWu(t1) = Y Y € (wij(tye1) — wij (). (35)
i=1 jeV;
The positive constants are characteristic of neuran
Equation (35) will be our starting point for the derivation of the energy saving learning
rule (42). Itis the general form any expression must have that describes the energy needed to
adapt the connection strengtlg as a function of their changesw;;. We now will minimize
the change in energk E as a function of the new weights; (¢,+1) under the constraint (12)
using the Lagrange method. This was the reason to wxitein (35) as a function of the
wy (t,+1) rather than as a function of thew,; = wy, (f,+1) — wi (¢,), as was done in (34).

4.1. Storage of one pattern

Let us consider at theth learning step, i.e. at timg, the storage of one pattegrin a network

with connections given by;; (#,). In the case of a network with changing and non-changing
weights as introduced in section 2, the expression for the change of energy is, up to second
order in the changes of the synaptic weights, given by (35). Note that a minimization of the
one condition (35) under the constraint induced by the fixed point equation (12) implies a
minimization of then? — M changesﬁw,?j (t,), since a sum of positive terms is minimal if and
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only if each term is minimal; recall tha? is the number of synapses with constant weights
Wij .

For the storage of one single patt&;rone may rewrite the fixed point equations (12) in
the form

gi(w;j(ty+1)) =0 i=1...,N) (36)
where

8 (Wij(ts1)) = k(25 = 1) = Y wyj(t)E; — Y wij(tar1)j +6;. 37)
jeve JjeVi
The method of Lagrange multipliers tells that one finds the extrema of (35) subject to the
auxiliary conditions (36) from th&/?> — M equations

IAE N dgx

+ _ %8 _ (i=1..,N;jeV) 38
ow;j (th+1) =1 kawij(t"ﬂ) ’ o

Upon substitution of (35) and (37) into this expression, we find¥Re- M relations

wij(tn+1) = wij(tn)+2io)\i$j (i= 1,...,N;j e V). (39)
In the method of Lagrange multipliers the number of constraints equals the number of Lagrange
multipliers;. Hence, there ar¥ Lagrange multipliers. Since thé multipliersi; are unequal
to zero, it follows from theV2 — M equations (39) thav? — M > N,orM < N> — N. We
now have obtained th¥ + N2 — M equations (36) and (39) for thé + N2 — M unknowns
A andw;j (t,+1).

The structure of these equations happens to be such that an explicit expressiorifor the
can be found, and thereupon, an explicit expression fouthé,.1) can be obtained. The
procedure is as follows.

Eliminating thew;; (#,+1) from (36) with the help of (39), leads to

2(,’,'

;= —yi)]28 — 1 40
Zkev,ék[K vi(t)](28 — 1) (40)

where we used the proper([sij)2 = &;. Substituting this expression fay into (39) yields

1
w;j (thr1) = w;j(t,) + [« — vi(t)](25 — D), (ew) (41)
Zke\/; &k
or, equivalently (see equation (17)),
1
Aw;j(ty) = =k — v (t)](25 — D)§; eV (42)
ZkeV,- &k

whererx is the positive parameter (11) related to the basins of attraction, and wheype the
(i =1,..., N) are the stability coefficients given by (8). We will refer to (42) by the name of
non-local energy saving learning rulsince the denominator of (42) depends on the input from
all neuronsk that are connected via changing connections to neiurdrhe factor between
square brackets

kK —yi(ty) =1 — (hi(t,) — 6;)(2 — 1) (43)

depends solely upon the temporal and environmental state of the post-synapticinthats,

onits post-synaptic potentia] at timer,, of thenth learning step, its threshol€s its activity&;

and a parameter. The factor (43) can be positive or negative. Therefore, the learning rule (42),
(43) derived here from the assumption of minimal energy change per learning step, happens
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to coincide with the particular Hebbian learning rule (20) and its anti-Hebbian counterpart
(21) found in section 3 on purely intuitive grounds, grounds which were related to biological
plausibility.

We thus have shown that if biological neurons would adapt their connections according to
the non-local energy saving learning rule (42), this adaptation would be such that the network
would fulfil the fixed point equation (12) for a pattegn Moreover, the learning rule (42)
guarantees that the energy needed to rebuild a neural network with connegtionsto a
network with connections;; (#,+1) is minimal.

We conclude this section with some remarks. The energy saving learning rule is only
applicable in those situations in which the denominator is unequal to zero. This can be
translated into a restriction on thg, k € V;. It follows that with an decreasing number
of adaptable connections there is an increasing number of patterns that cannot be stored with
the help of the non-local energy saving learning rule. This effect will be absent when the local
energy saving learning rule is used (see section 6).

When we repeat the derivation of (42) in the spin representation with time-dependent
thresholds as given by (5), we find again (42) witheplaced bys + 1)/2, i.e.

AJ,‘j O(S,'(Sj"'l) (44)

as could be expected. If, however, the derivation of (42) is repeated in the spin representation
with T; taken to be a constant, as is usually done in the spin representation, one finds a result
which differs from (44), namely

AJ,‘j X SiS;. (45)

This is the biologically less relevant result commonly encountered in the physical literature,
as noticed already in section 3 (see equation (23)).

4.2. Storage op patterns

In the previous section we saw that storage of one pafieyan be achieved via a synaptic
changeAw;; given by (42). Hence, storage ¢f patterns¢” (u = 1,..., p) might be
accomplished by repeated application of the learning rule (42). Let us therefore consider the
following learning process. In a first interval of timey,[t1), a first patterrg?! is stored via the
changeAw;;(t), leading to the connections;; (r1) = w;;j(t) + Aw;;(to), j € Vi. Next, in

the interval [, 1), patterr¢? is stored, etc. Finally, patteg? is stored. We call this sequence

of storage ofp patterns a learning cycle.

The energy saving learning rule is a storage prescription for a new pattern, which does
not take into account, however, any constraint that would guarantee that a previously stored
patterns remain stored. Thus it may occur that storage of a new pattern will perturb, partially
or totally, the storage of an older pattern.

In section 5, on maximal learning efficiency, we will determine a learning rule which does
guarantee that new patterns are stored without wiping out previously stored patterns. However,
this learning rule will turn out to be biologically unacceptable. We therefore proceed with
the learning rule derived above. We shall derive, along the lines of reasoning of Diederich
and Opper [7], but for diluted networks, an expression for the weightf the synaptic
connections after infinitely many learning cycles. It will turn out that, in the end, previously
stored patterns are not forgotten.

As follows from equation (17), the connections afielearning cycles are given by

R p
w;j(trp) = wjj(fo) + Z Z Aw;j (tn—1)prp—1) (Jew) (46)

m=1pu=1
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with g, the time afterR learning cycles op patterns.
Substituting (42) into (46) we find

)4
wij(trp) = wij(t0) * N™1Y " Fl'(tg-pypru-1)El (€ V2) (47)
n=1
where
R
Fl' (t(r—1yp+u—1) = Z [K(Zfiﬂ -1 - ( Z wik (to)§ + Z Wik (Em—1) pru-1)Ef — 9:‘)}
m=1 keVe keV,
-1
x (Nl > g,f) (48)
keV;

is the effect orw;; of pattern£ after R learning cycles have been completed. From (48) it
follows that

<N1 Z Slﬁb) [EM(I(R—].)]ﬁM—l) - EM([(R—Z)p+M—l)]

keV;
=k(26/' -1 — ( Z wi (10)&] + Z Wik (FR—1) prpu—1E] — 9i>- (49)
keVe keV,
In the Rth learning cycle, attimeg_1),+,—1, only the patterng®, ..., €'~ have changed

the weights of the network. Hence, tif with v < u have new values at timeg_1),+,1,
whereas theé” with v > u are still identical to their values in the previous learning cycle,
i.e. are equal to the values at timg_),+,.—1. Thus, with the help of (47), the weights in the
right-hand side of (49) can be expressed as follows in terms af the

Wik ((R-1)pep—1) = Wik (to) + N1 Z F(tr-1prp-1)& + N7* Z FY (t(r—2)p+p—1)&; - (50)

v<p v

Eliminatingwix (f(r—1) p+u—1) from (49) with the help of (50) yields
NI N F (trenyprn-1)ELEL

keViv<u

= =N N Ftwppu-DEE + [k — v/ (0] (28 - 1). (51)
keViv>u
This system of linear equations can be solveddbrusing the Gauss—Seidel iterative method.
We first rewrite (51) in matrix notation. Next, we introducea< p matrix C;, the matrix
elements of which are given by
" =Ny gy (52)
keV;
We might call this matrix the ‘reduced correlation matrix’, since it correlgfesand &’
while taking into account, vi&;, the connectivity of the network. The reduced correlation
matrix is closely related to the usual correlation matrix/jf contains all neuron indices.
We proceed by decomposing this matiix into matricesL; and U; in such a way that
C; = L; + U;. The matrixL; is a matrix with only non-zero matrix elements on and
below the diagonal and/; is a matrix with only non-zero matrix elements above the
diagonal. We also introduce the vectdrgR) = (E.l(t(R_l),,ﬂ_l)), ooy FP(tRo1) pip-1))
andG; = ([ — y (o)l (25} — 1), ..., [« — ¥/ (10)](257 — 1)). Finally, we shall denote a
p X p unit matrix as/. We thus can rewrite (51) in the form

Li-F,(R)=-U;-F;(R-1+G,. (53)
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By iteratively solving this equation faF; (R), we find
FER) =[-L7 - Ul RO+ L7 [T = L7 Ui+ + (L7 UpR?] - Gi. (B4)

The symmetric matridxC;, as defined in (52), is positive definite and symmetric. It then can
be shown that the matri*Li‘1 - U; has eigenvalues smaller than one [22]. As a consequence,
we have

lim L7t Ul®t=0 (55)
and it follows that, in the limitR — oo, (54) converges to
Fi(o0) = L' - [1 = (L' UDI - G,
—ct.G (56)

whereF; (c0) = limgz_  F;(R). Substitution of (56) in (47) and restoring the old notation,
yields, forR — oo

P
wyly = | PO TN L o @I - DEHE Gev) )

w; () G eV

Where(lel)’” is the inverse of the matrix (52).

By substituting (57) into (12) it can directly be verified that the weights (57) fulfil (12)
forall u (w =1,..., p). Forp = 1 this was to be expected, since the learning rule (42) was
constructed that way. FQr > 1 one could, for the same reason, expect that (12) would be
verified by (57) for the final pattern of the learning cydé, It is less transparent, however,
that (57) satisfies (12) for all pattergs.

The result (57) is exact for networks with a number of vanishing connections running
from My = 0to My = N? — Np, i.e., valid for dilution 0 tod = 1 — &, Wherea = p/N.

The analogous calculation performed by Diederich and Opper for networks with éifydp

thatV; contains all indices, yields a result that coincides with the result obtained via the usual
pseudo-inverse solution [5, 6] of equation (12). Hence, the following question may now arise.
Can we solve the equation (12) for a neural network wh&ris not empty and, consequently,

the method of the pseudo-inverse in its standard form is not applicable? The answer to this
question is affirmative. In appendix B we modify the method of the pseudo-inverse so as to be
applicable to systems with changing and non-changing interactions. Solving equation (12) for
networks with changing and non-changing connections via what we have called the modified
method of the pseudo-inverse, one indeed obtains (57), as we also prove in the appendix.

Thus we have shown that the solution that corresponds to the stepwise energetically most
economic way to realize storage of patterns in a partially connected network, turns out to
be identical to the one obtained via a—modified—version of the well known mathematical
method of the pseudo-inverse applied to the fixed point equation (12). In other words, the
non-local energy saving learning rule (42) leads to the solution of the fixed point equation
(12), obtained via the modified method of the pseudo-inverse, which is based, in turn, on the
reduced correlation matrix.

We conclude this section with a few remarks. In general, the inverse of the natrix
cannot easily be found analytically. However, in the non-biological case that none of the
weights is kept constant, all index sét$ are empty. As a consequence one may use, for large
N and low storage capacity := p/N, the approximations

N
Ny gl =a (58)
j=1
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N
NIy Eler=a®  (u# ). (59)
j=1
Substitution of (58) and (59) into (52), where naivis the set of all indices, yields
C" =a(l—a)s,, +d°. (60)
For the inverse of}"" we thus obtain from (60) the simple analytical expression
1 a
Thyw—___ = - . 1
€ a(l—a) |:6W ap—a+1] (61)
Using (61) in (57), leads to
1 a P

> Ik =yl )] (28! — DE)

mv=1

i (2 = w;i(tg) —
wij (foc) = wi (7o) Na(l—a)ap —a+1
1 . " Iz "

— — ()] (28] — D& ,j=1...,N). 62
Nal—a) ;[K vl ()] (28] — DE! (i, j ) (62)
Equation (62) is an explicit expression for the weights of a (non-biological) network in

which all the weights, including the self-interactioing, are present.

Kanter and Sompolinsky used the result (57) in dage; for a fully connected network
without self-interactions [9]. Their ad hoc assumption that the self-interactigresan be put
equal to zero, turns out to be justified in view of our exact result in (57) witfry) = 0.

5. A learning rule with maximal learning efficiency

Inthe preceding section learning of a collection of patterns was achieved by repeated application
of the non-local energy saving learning rule. This learning rule was not constructed in such
a way that conservation of storage of old patterns was automatically guaranteed when a new
pattern was stored. We now address the question of whether and how storage of a new pattern
¢7*1 can be achieved without disturbing the storage of the old patténs. , £”. We shall

refer to this type of learning as maximally efficient learning.

Linkevich [8] treated this problem on the basis of a mathematical model, in which
suppositions are made which cannot be true in a biological neural network. Firstly, he
treated the thresholdg (¢), equation (5), as a vanishing constant. Moreover, his network
has symmetric connections; (r) = w;; (¢), whereas a biological network has non-symmetric
connectionsu;; (t) # w;; (¢). Finally, his network is fully connected, i.e. ali;; (r) # 0.

We may improve and generalize the reasoning of Linkevich to obtain a maximally
efficient learning rule for a partially connected network with non-symmetric connections.
The calculations only hold for networks in which the thresholds are equal to the stability
coefficientsk, i.e. 6; = «, for all i, and in the case where the initial connections are equal
to zero,w;; (o) = O for all i and j. As a final result we arrive, in this particular case, at the
following rule for learning with maximal learning efficiency (see appendix A)

[k — ¥ Ok — /0] @™ - e - 1)

ZZEV, [« — V/pﬂ(t)]élp+l

From (63) we immediately see that, in generaly;; is not symmetricid and;j. However,
for a network in which all connections may change we find that; is symmetric in' and,
in accordance with the result of Linkevich. Note thattfeependent factors in the numerators
of (63) and (42) are identical, which reflects the fact that the new pagféfnhas to obey

Aw;j(t) = (J € Vo). (63)
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the fixed point equation, both in the cases of ‘stepwise minimal change in energy’ (42) and of
‘stepwise maximal efficient learning’ (63).

The learning rule with maximal learning efficiency (63) is of the form (23), a form which
we have rejected, in section 3, on biological grounds. We therefore shall not pursue any further
the analysis of the learning rule with maximal learning efficiency in the remainder of this paper.

6. Locality of learning rules

Up to now we have not mentioned an important limitation of a biological learning rule. The
mathematical learning rule to change a weight of a network can, in principle, be local or non-
local. The second possibility must be excluded in case a weight is associated with a synapse:
there is no biological construction available in the brain to tell a specific synapse how and
when to change as a function of properties of neurons with which it has no direct contact. The
modifications must result from tHecal situation, i.e. limited to the situation spatially ‘close
enough’ to the synapse in question, and within a ‘brief span’ of time. Thus, a changenay
depend only on variables local, in space and time, to the neuramd;. The local variables
available at the synapse between neuticarsd j are the activitieg; andé;, the post-synaptic
potentialsh; and# ;, and the threshold® and6;. Hence, the factors;; occurring in Hebb

rules should depend on these variables only

€ =¢;(&, hi,0;,&,hj,0;). (64)
The energy saving learning rule (42) forw;; guarantees, after repeated application,
storage of patterns in a way which is energetically efficient. The factor between square brackets

in the non-local learning rule (42) fulfils the criterion of locality. However, the learning rule
as a whole is not a local learning rule because of the factor,

1 / > & (65)

keV;
which depends, because of the sum dveestricted toV;, equation (16), on the network
connectivity, and hence, not on properties related to neurand j only. If we approximate
(65) by some constany,; say, we do obtain a learning rule that is local,
Aw;j(ty) = milk — (hi(t,) — 0,)(2&; — D](25: — D§;. (66)

We shall refer to (66) as tHecal energy saving learning ruleThe bettem; approximates a
value dictated by (65), the better this local learning rule will be with respect to its energetic
efficiency.

At this point it is important to note that the proof of convergence of section 4.2 can be
generalized, replacing everywhere the factor (65) by the constant positive factés a
final result (57) is found again, provided certain restrictiongoare satisfied. It then can be
proved [23] that the local, biologically realizable energy saving learning rule yields the same
final valuesw;; () as the non-local energy saving learning rule.

As noticed in section 1, the constaptis a neuron property, the determination of which
is outside the scope of this paper: we then would have to determine the coeffigjéntthe
expression forf;; (31) explicitly.

A reasonable approximation fgr can easily be obtained for a fully connected network
where all connections may change in time. For such a network we have the approximation
(58) for the denominator of (65), which implies

n ~ (Na)™* forall i=1,...,N. (67)
We will use this approximation in the following section where we consider a biological network.
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7. Local versus non-local learning

In this section, we will study numerically, for a biological network with dilutiénthe local
energy saving learning rule (66) as a competitor of the non-local learning rule (42); wer

take, quite arbitrarily, the constant (67). We could as well have takéhdr 1/(N (1 — d)):

the essentials of the behaviour of the numerical results are not very sensitive for the precise
values of the;.

In order to judge the functioning of a recurrent network with respect to its ability to store
an arbitrary collection op patterns¢* (u = 1, ..., p), we takeL sets of such collections,
and label them by¢*™ (m = 1,..., L), i.e. &~ is patternu of setm. The performance
of the network with respect to the patterns from #hih set may be characterized by tNe
stability coefficienty//™ (i = 1,..., N;u =1, ..., p) defined in equation (8). The stability
coefficientsy/“™ should be positive (see equation (10)). Moreover, we have normalized in
such a way that the should be close to one. Hence, the mgfé" we find with values around
one, the better the network will perform.

We first define for the particular set of p patterns the quantity:

m __ : 1,m p.m
Y= T'QN{%- s Vi h (68)
Hencey™ is the minimal value of all stability coefficients for a particularsedf p patterns. A
network does not function i#” is negative, and functions better and better wh&rbecomes
closer to one (with the normalizatian= 1). To find a number that characterizes the network
performance for an arbitrary set ¢f patterns, we average the minimal valyg$ over L
arbitrarily chosen sets,

1 L
y=727" (69)
m=1

Hence,y is the average with respect to thesets ofp patternss#. We therefore will refer to
y as the average performance of the network. Similarly, we define the average energy change
AE

1 L
AE = — AE™ 70
Lm; (70)

whereA E™ is the change of energy in one learning step ofitfteset of patterns. Furthermore,
we define the average energy change per synapsas

Ae = AE/(N? — M) (71)

where M is the number of non-changing synapses. We will also study the performance of
neural networks with varying dilution by considering the distribution of the stability coefficients
y/"". By studying numerically the quantitigsand Ae and the distribution of the stability
coefficientsy/*", we can judge the power of the (exact) non-local energy saving learning rule
(42) compared to the (biologically feasible) local energy saving learning rule (66), (67).

7.1. Storage of one pattern

Performance. The non-local energy saving learning rule (42) and its local approximation
(66), (67) are used to store one pattérrin order to compare the quality of the two learning
rules we have plotted in figure 1 the average performanesus the dilutiod of the network

for both learning rules. We see that the non-local learning rule stores a new pattern such that
y = 1, as could be expected since it has been designed that way. Moreover, we see that both
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Figure 1. The average performancg, of a network of 512 neurons as a function of its dilution

d. Dilution d = 0 means that the network is fully interconnected;(# 0O for all i and ),
dilution 4 = 1 means that there are no connections any meyg £ 0 for alli and ). The one
pattern¢ is chosen arbitrarily, but such that the mean activity- 0.2. The computations have
been averaged over 100 different The error bars give the standard deviation of the averaged
stability coefficienty; (i =1, ..., N). The calculations are performed starting from a tabula rasa
for the weights ¢;; (1o) = 0) and vanishing thresholdg; (= 0). (@), (b) In the first two figures,

a comparison between the non-local energy saving learning rule (42) (upper curves) and the local
energy saving learning rule (66) (lower curves) after it has been applieté, andlf) five times.

(c) A comparison of the local energy saving learning rule (66) after it has been applied one (lower
curve), five and ten (upper curve) times.

the non-local and the local learning rules lead to positive values, @ind, hence, lead to
storage of the pattegh The non-local learning rule, however, leads at onge to 1, whereas
the local learning rule converges o= 1 only after repeated application. Hence, basins of
attractions of the local learning rule are smaller initially (see figure 1).

Use of energy. Furthermore, we consider the average energy change per syhafsg) for
the non-local and local learning rules as a function of the number of synapses in a network of
a fixed number of neurons. In the case of a single application of an energy saving learning
rule, it turns out that for the non-local learning rule increases as the number of synapses
decreases, whiléde is constant in case of the local learning rule. This favourable situation
of remaining constant apparently is an unexpected positive effect of the approximation made
when going from a non-local energy saving learning rule to a local energy saving learning rule.
In the case of repeated application there is almost no energy effect for the non-local
learning rule, and a slight effect for the local learning rule: the energy need per synapse grows
with growing dilution (see figure 2).
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Figure 2. The average energy consumed per synapsi one learning step, of a network of 512
neurons as a function of its dilutieh The one pattergis chosen arbitrarily, but such that the mean
activity « = 0.2. The computations have been averaged over 100 différeflte error bars give

the standard deviation of the averaged stability coefficign{s = 1, ..., N). The calculations

are performed starting from a tabula rasa for the weighfs(fp) = 0) and vanishing thresholds

(6; = 0). (@ The average energy change per synapséor the non-local energy saving learning

rule after one (upper curve) and two learning steps (lower curve, coinciding with the horizontal
axis). ) The average energy change per synafigdor the local energy saving learning rule
caused by the first (upper curve), second or fifth (lower curves) time that the local energy saving
rule (66), (67) is used.

7.2. Storage op patterns

Having studied numerically the storage of one pattern, we now turn to the storagatiérns.
As pointed out in section 4.2 this may be achieved through repeated application of the energy
saving learning rule.

Storage of one patterrp(= 1) could be achieved in such a way that, by construction,
all /™ (1 = 1) were equal to one in case of the non-local learning rufe® = 1 for all i
andm. As a consequence, the local energy saving learning rule, which is an approximation to
the non-local one, has the property thaty;ﬂ’f” are ‘not too far away’ from the value = 1,

i.e. they are positive. We recall that positivity of the stability coefficiex;i‘té’ is a sufficient
criterion for a network to store what should be stored (see figure 1).

When the energy saving learning rule is used to store more than one pattern, the positivity
of all but the last stored pattern is not guaranteed. As noted before, we must allow for the fact
that storage of a new pattern may spoil the storage of older patterns. Therefore, the requirement
that the minimum of aly/" (1 = 1, ..., p) should be positive is too strong. Forgetting this
turns out to be an inevitable consequence of storing new patterns, at least in the beginning. By
repeating the learning procedure for whole sequences of patterns more angrfidsecome
positive, suggesting that more and more patterns may be definitely stored.

In order to judge the performance of the network in the case of storage of more patterns,
we now picture the distribution of the“™ over the real axis. Ideally, al}t'" should be equal
tox = 1. Infigure 3 the distribution has been plotted for both the non-local and local energy
saving learning rule. As one observes from figure 3, some of thave values smaller than
one (and even negative) whereas others have values larger than one. This is due to the fact
that storing in seir a patterr¢”, they"™ of the other patterng (u # v) are not taken into
account in the learning step and as a consequence can be enlarged or reduced in value. We
have chosen to put the numberjofwith values outside the plotted interval in the very first
and the very last interval (see, e.qg. figure)B(

The general conclusion is that the local energy-saving learning rule, although in principle
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Figure 3. The average number of stability coefficients per interval of size @5, divided by

the total number of the stability coeﬁiciemt/#’m, given by NpL, has been plotted for a neural
network with dilution 06, after one or more learning cycles, for the non-local and local energy
saving learning rules. The calculations have been performed for a tabula rasa netwogk,= 0,

of N = 128 neurons with vanishing thresholds & 0). An average has been takenlof= 100

sets ofp = 32 patterns. The average activityuis= 0.2. (a)—(d) The average number of stability
coefficients after 1, 5, 10 and 20 learning cycles in case of the local energy saving learning rule
(66), (67). €)—(h). The average number of stability coefficients after 1, 5, 10 and 20 learning
cycles in case of the non-local energy saving learning rule (42).

approximative, is an excellent competitor of the non-local one. After five learning cycles the
number of negative;/™ is already negligible (see figurestB@nd €)), and the distribution
of they/"™ are comparable.

We finally make some observations regarding other learning rules. In view of (24), the
symmetric learning rule (23) yields the same values oftlaes in the case of our asymmetric
learning rule (20). Hence, in particular, the whole analysis of this section holds true for the
symmetric learning rule as well. In other words, although the changes in the weights
w;; as given by the symmetric learning rule (23) are, of course, different from those given by
our asymmetric learning rule (20), the convergence properties—studied here yia-te
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exactly the same for the symmetric learning rule (23) and our asymmetric learning rule (20).
The ‘wrong’ asymmetric learning rule (22) does not work at all, as has been explained at the
end of section 3.

8. Summary

We have shown that two different arguments, a biological one (section 3 and a physical one
(section 4) lead to a Hebb rule of the same asymmetric form: compare equations (20), (21) and
(42). Alearning rule of this form is never, or at least not often, used in the physical literature,
which, in general, is less concerned with an accurate modelling of a biological network.

The biological argument was largely based on the improbability of a change of connections
if the pre-synaptic neuron was inactive. The physical argument was based on the expression
(35) for the energy change, not on any ad hoc cost-function like (27) as has been done so far in
the literature. The local version of the energy saving Hebb rule (42), given by equations (66),
(67), may be relevant for biological systems. It has been tested numerically in section 7, and
turns out to yield storage of patterns in a satisfactory way (see in particular figure 3).
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Appendix A. Maximal efficient learning

We shall here merely verify the maximal efficient learning rule, not derive the rule, since
the derivation closely parallels the one of Linkevich [8]. In view of the special constraints
mentioned directly above (equation (63)), equation (12) reduces to

dowy0F) =28 (w=1....p). (A1)

JjeVi
Similarly, the solution (57) of (12) reduces to
P
NTEY T 2ENCTYE] (e V)

Hov=1

0 (j € Vo).

w;; (1) = (A.2)

In order to store a new pattegf**, the new weightsy;; (¢') have to obey the equations
D wi(EN = 2l (w=1...,p+1. (A.3)
Jjev;

The weightsw;; (¢') are related to the weights;; (r) by

w;; (1) + Aw;; (1) Jewv)

= w0 (Gevo

(A.4)

where thew;;(¢) are the connections after storage of the pattéfns. ., £ as given by
equation (A.2) and thew;; () are given by (63).
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Inserting (A.4) with (A.2) and (63) into the left-hand side of (A.3) yields
ZKgiu*'ZAwij(l)éf (u=1...,p)

> wi el = jev (A.5)
jev; 2cEl (u=p+1).

The right-hand side of these equations is equal to that of (A.3) if
> Aw;nEl =0 (w=1,...,p). (A.6)
jevi

In order to show that (A.6) holds, we first decompeﬁJél according to

)4
Yoargleyl™  (je V)

grt= (A7)
g T eV
n=1
wherea*, aj.‘ andl/f}’+l have been taken such thatt
YEYT =0 w=1...p. (A8)
Jjev;
Using (A.2) and (A.8) one may prove the auxiliary relation
> wiyl™ = 0. (A.9)
keV;

The proof of (A.6) is now straightforward. First, substitution of (63) into (A.6) yields

Y Awy (g oy [zcs;’” -y w,kms{”]s;‘ (w=1...,p). (A.10)

jevi jevi kev;

Then, substituting the decomposition (A.7) in (A.10), and using (A.1), (A.8) and (A.9) we see
that this expression vanishes, which proves (A.6). Hence, the left-hand side of (A.3) equals
the right-hand side of (A.3) for a learning rule given by (63).

Appendix B. Modified method of the pseudo-inverse

Consider thep sets ofN linear equations

N
Zwijx;‘:al” i=1...,N;u=1,...,p) (B.1)
j=1
: . 2
wherexj.‘ anda!" are known constant§ (= 1,..., N; u = 1,..., p). The N? unknownsw;;

are not determined as long as< N. Let V; be the subset of indiceswith the property that
w;; is a solution of the set of equations (B.1), and let the complement of thé wdth respect
to the total set of indices (1. ., N), denoted by, contain the indiceg with the property
that thew;; have the pre-described constant valbigsi.e.

wij = bij (J e Vo). (B.2)

T In the case where all connections may change in time, the inde¥;sets all equal to the set of all indices. Then
the equations (A.7) withj € V¢ disappear and (A.8) amounts to the condition that the vagtdt is orthogonal to
the vectorg” (u=1,..., p). Hence, in this particular case there are N restrictions (A.7) and (A.8) fop + N
variablesa* andy;.
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chosen in such a way that the system of equations (B.1) does not become incompatible. If the
setV¢ is empty, a solution of (B.1) can be obtained via the Moore—Penrose pseudo-inverse
matrix [5, 6]. We want to obtain a solution far;; of (B.1), (B.2) in the case wheré® is not
empty, and the pseudo-inverse matrix cannot be used directly. To that end, we construct a new
set of equations, closely related to (B.1), (B.2), which can be solved via the pseudo-inverse.
We refer to this construction as theodified method of the pseudo-inverse

We first define a new set of variablés; according to

ﬁ)ijzwij—bij (z,]=1,2,,N) (B3)

whereb;; are arbitrary in casg € V;. We then have
ij — bij €V
T (8.4
0 (j € Vo).

The under-determined set piV linear equations (B.1), (B.2) can now be rewritten

> bt =al w=1...,p) (B.5)

jevi
where 5 N

j=1

Note that (B.5) cannot be solved with the help of the pseudo-inverse, since the summation is
only with respect to a restricted set of indiceg V;. We therefore consider a new set;aV
linear equations, namely

N
> vyl =al' (n=1....p). (B.7)
=1

The relation of (B.7) to (B.5) can be made clear by taking

7 .
w_ % (JeW) B
yj_{o (JGVIC) ( 8)
since then the set of equations (B.7) for tié unknownsv;; (i, j = 1,2, ..., N) becomes

identical to the set of equations (B.5) for the unknowp (i = 1,...,N;j € V;). The
equation (B.7) can be solved with the help of the pseudo-inverse. The solution reads
V4
vij= Y al(CchHmyy (i,j=1,2....,N) (B.9)
w,v=1
whereC*" is the usual correlation matrix [24]

N
="y (B.10)
k=1

If we use (B.8), the matric** becomes what we have called the ‘reduced correlation matrix’,
given by
= xx. (B.11)
keV;

The modified correlation matrix takes into account the modifications in the usual correlation
matrix due to the particular network architecture as dictated by the indék.sEhe solutions
v;; become, using (B.8),

P
doaneThrxy o (e
ov=1

0 (j € VO).

(B.12)

Vij =
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Hence, the solution (B.12) turns out to be compatible with (B.4)jfer V. Putting now
ﬁ)ijzv,-j (l,]:1,2,,N) (813)
we have obtained a solution for (B.5), as follows by comparing (B.7) and (B.5). In this way

we find, transforming back from;; to w;; with the help of (B.3), and substituting (B.6), the
final result for the solution of the under-determined set of equations (B.1), (B.2):

p N
b+ Y lal =) byxfICTHx) eV
n,v=1 j=1
b; (Jjevd).
We recall that the;; are arbitrary forj € V;, and prescribed foj € V<. Notice that the
solution (B.14) is not unique because of the arbitrary constan{g < V;).
We want to solve (12) for a network with changing connectiensif j € V; and non-
changing connections jf € V. Applying (B.14) with
x =&
b,’j =wij(to) (i,j= 1,2,...,N) (B].S)
a' =k =1 +6
we obtain at once (57). We thus arrive at the observation that the energy saving solution
(57) coincides with the solution (B.14), obtained with the help of the modified method of the
pseudo-inverse.

U),'j =

(B.14)
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